Creating Clusters – Practical Coniderations创建集群–实际考虑.pptVIP

Creating Clusters – Practical Coniderations创建集群–实际考虑.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Creating Clusters – Practical Coniderations创建集群–实际考虑

Designing a Cluster for a Small Research Group Jim Phillips, Tim Skirvin, John Stone Theoretical and Computational Biophysics Group Outline Why and why not clusters? Consider your… Users Application Budget Environment Hardware System Software Case study: local NAMD clusters Why Clusters? Cheap alternative to “big iron” Local development platform for “big iron” code Built to task (buy only what you need) Built from COTS components Runs COTS software (Linux/MPI) Lower yearly maintenance costs Re-deploy as desktops or “throw away” Why Not Clusters? Non-parallelizable or tightly coupled application Cost of porting large existing codebase too high No source code for application No local expertise (don’t know Unix) No vendor hand holding Massive I/O or memory requirements Know Your Users Who are you building the cluster for? Yourself and two grad students? Yourself and twenty grad students? Your entire department or university? Are they clueless, competitive, or malicious? How will you to allocate resources among them? Will they expect an existing infrastructure? How well will they tolerate system downtimes? Your Users’ Goals Do you want increased throughput? Large number of queued serial jobs. Standard applications, no changes needed. Or decreased turnaround time? Small number of highly parallel jobs. Parallelized applications, changes required. Your Application The best benchmark for making decisions is your application running your dataset. Designing a cluster is about trade-offs. Your application determines your choices. No supercomputer runs everything well either. Never buy hardware until the application is parallelized, ported, tested, and debugged. Your Application: Serial Performance How much memory do you need? Have you tried profiling and tuning? What does the program spend time doing? Floating point or integer and logic operations? Using data in cache or from main memory? Many or few operations per memory access? Run benchmarks on many platforms. Your Applica

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档