- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
三元正极材料行业的研究的报告
镍钴锰三元正极材料 行业研究报告 二○一一年九月二十四日 目 录 一、三元正极材料介绍 1 1.1 三元正极材料简介 1 1.2 三元材料的结构特征 2 1.3 三元材料的分类 4 1.4 三元材料的改性方法 5 1.5 三元材料与其他正极材料性能比较 5 1.6 行业应用 5 二、三元材料行业市场现状及发展对策 6 2.1 全球锂电池材料需求及销售分析 6 2.2 三元材料国内外发展现状 7 2.2 三元材料市场细分 8 2.3 三元材料市场前景 8 2.4 三元材料市场竞争状况 9 三、国内三元材料企业及产能概况 9 四、生产制备方法 10 五、应用领域 12 6.1 通讯电池 12 6.2 新能源汽车 12 一、三元正极材料介绍 1.1 三元正极材料简介 三元正极材料是指镍钴锰酸锂(Li(NiCoMn)O2),三元复合正极材料前驱体等产品,以下所说的三元材料仅指其通式为Li(NixCoyMnz)O2的镍钴锰酸锂,是以镍盐、钴盐、锰盐为原料制备而成,产品为黑色粉末,其含有镍钴锰的比例可以根据实际需要调整。可用于小型电池和动力电池中。三元材料因兼有LiNiO2和LiCoO2的优点,且价格便宜,合成容易,被认为是最有可能取代目前商用LiCoO2的新型正极材料,也是现今锂离子电池研究的一大热点。 图1-1 三元正极材料体系 三元材料与钴酸锂相比,具有以下显著优势: 1、成本低:由于不含钴,成本仅相当于钴酸锂的1/4 且更绿色环保。 2、安全性好:安全工作温度可达170℃,而钴酸锂仅为130℃,大幅提升了使用安全性,有利于消费者的人身安全。 3、克容量高:充电电压在4.6V 时(钴酸锂充电限制电压为4.2V),其克容量发挥高达210mah/g, 充电电压在4.8V 时,其克容量发挥高达245mah/g,相当于 钴酸锂的1.7 倍,极大提升了电池的能量密度和供电时间。 4、电池的循环使用寿命延长了45%。 1.2 三元材料的结构特征 自LiNi1/3Co1/3Mn1/3O2 首次合成并在锂离子电池中应用以来,其内部结构以及三种过渡金属的作用机理一直是理论界关注的焦点。LiNi1/3Co1/3Mn1/3O2的结构与LiCoO2 类似,为α-NaFeO2层状结构,属R3 m空间群。Li原子占据3a位置,氧原子占据6c位置,Ni 、Co 、Mn 占据3b位置,每个过渡金属原子由6个氧原子包围形成MO6 八面体结构,而锂离子嵌入过渡金属原子与氧形成的LiNi1/3Co1/3Mn1/3O2 层。目前,关于3b位过渡金属的排列有3种假设模型:第一种模型是由Ohzuku 等通过第一原理计算得到的3×3 R30°超晶格如图1 (a) ,Ni 、Co 、Mn3种原子均匀有规则地排列在3b层;第二种模型是Co2O2 、Ni2O2 、Mn2O2 层交替排列组成的晶格如图1 (b) ;第三种模型是Ni 、Co 、Mn3种原子在3b 位的分布是随机的,在晶体内部局部分布无一定规则。Ohzuku 等合成了LiNi1/3Co1/3Mn1/3O2 材料,通过HRTEM可知该材料含有立方密堆积的氧原子层状构型,[001 ]区电子衍射显示出3×3 R30°超晶格。XRD分析得到该材料为P3112对称点阵,而非简单的R 3 mNaFeO2构型。并在EXAFS 的结果中发现,M—O 键长分别为Co 1.93 ? 、Ni 2.03 ?、Mn1.92 ?,此结果与第一原理计算结果一致。同时他们等在LiNi1/3Co1/3Mn1/3O2 材料的计算中得到,第一种模型的晶格形成能为- 0117eV ,而第二种模型的晶格形成能为+ 0106eV。因此,在合适的合成条件下,完全可以形成第一种晶型,这种晶型在充放电过程中可以使晶格体积变化达到最小,能量有所降低,有利于晶格保持稳定。对LiNi1/3Co1/3Mn1/3O2材料的内部原子排列,虽然Ohzuku 等通过计算,并运用一些检测手段进行验证,但并不能充分说明材料内部具有如图1-2 (a) 中完全有规则的原子排列。 Whitfield 等用中子和不规则粉末衍射研究LiNi1/3Co1/3Mn1/3O2的超结构和正离子位错,通过共振衍射技术加强元素之间的相互作用,利用中子衍射测试得到3种过渡元素之间的距离。中子衍射和XRD 数据结果表明,LiNi1/3Co1/3Mn1/3O2材料中并不存在Ohzuku等 所报道的3×3 R30°超晶格,而且Ni 、Co 、Mn3种元素在R3m点阵中3a位置的分布并不是随机的。Rietveld结构精修分析结果发现2 %的Ni从3a位迁移到3b位取代Li原子,而Co 、Mn只占据晶格中过渡金属的3a位。到目前为止,LiNi1/3Co1/3Mn1/3O2 材料
文档评论(0)