Practice session5HLM多层线性模型讲义.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Practice session5HLM多层线性模型讲义

R-practice session 5 CSSS 560 Marijtje van Duijn Winter 2006 The commands used in this session are available as R syntax file (Session5.R) at the website. Data input and preparation We use the data as provided in example 12.1 of Snijders Bosker. The dependent variable is student evaluations of 51 teachers over 4 years. The data are very unbalanced. Explanatory variables are teacher experience (coincides with ‘time’) own evaluation and gender. After getting the necessary libraries, download the data file SBbook12.csv from the class website. Also get the file session5.r and execute the commands under data preparation. Note that a groupedData object ‘longdata’ is created. Some more commands for investigating grouped data We can extract some useful information about the grouping with the following commands: table(getGroups(longdata)) getGroups(longdata) unique(getGroups(longdata)) Another useful trick in this case may be to split the data in separate objects for men and women. This is especially attractive for making pictures. (The same can be done for the men; see the file session5.R) longdataf-groupedData(prox_stu~occ|teacher,data=subset(data12,gender0), +labels = list(x=time, y=proximity score)) Estimating multilevel models for longitudinal data One of the important questions in modeling multilevel data is how to treat ‘time’. In this case with fixed occasions we have to choose what kind of ‘contrasts’ we want to have. In the example in the book, a ‘dummy’ coding is used, giving separate estimates for the means at each time point. Here we will also explore other contrasts that are statistically equivalent, but lead to different parameter estimates. We will start with the ‘empty’ compound symmetry model (or random intercept model) with equal means for all time points (model 1 in table 12.1). model1.1-lme(prox_stu~1,data=longdata,random=~1|teacher) summary(model1.1) We then estimate three different specifications for model 2: P for polynomial, F for f

文档评论(0)

xcs88858 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:8130065136000003

1亿VIP精品文档

相关文档