通信中常见噪声.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
通信中常见噪声

通信中的常见噪声 几种噪声,它们在通信系统的理论分析中常常用到,实际统计与分析研究证明,这些噪声的特性是符合具体信道特性的。 2.5.1 白噪声 在通信系统中,经常碰到的噪声之一就是白噪声。所谓白噪声是指它的功率谱密度函数在整个频域内是常数,即服从均匀分布。之所以称它为“白”噪声,是因为它类似于光学中包括全部可见光频率在内的白光。凡是不符合上述条件的噪声就称为有色噪声。 白噪声的功率谱密度函数通常被定义为 ( 2-22) 式中,是一个常数,单位为W/Hz。若采用单边频谱,即频率在()的范围内,白噪声的功率谱密度函数又常写成 (2-23) 由信号分析的有关理论可知,功率信号的功率谱密度与其自相关函数互为傅氏变换对,即 (2-24) 因此,白噪声的自相关函数为 (2-25) 式(2-25)表明,白噪声的自相关函数是一个位于处的冲激函数,它的强度为。这说明,白噪声只有在/2时才相关,而在任意两个不同时刻上的随机取值都是不相关的。白噪声的功率谱密度及其自相关函数,如图2-11所示。 实际上完全理想的白噪声是不存在的,通常只要噪声功率谱密度函数均匀分布的频率范围远远超过通信系统工作频率范围时,就可近似认为是白噪声。例如,热噪声的频率可以高到Hz,且功率谱密度函数在0~Hz内基本均匀分布,因此可以将它看作白噪声。 2.5.2 高斯噪声 在实际信道中,另一种常见噪声是高斯噪声。所谓高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。其一维概率密度函数可用数学表达式表示为 (2-26) 式中,为噪声的数学期望值,也就是均值;为噪声的方差。 通常,通信信道中噪声的均值=0。由此,我们可得到一个重要的结论:在噪声均值为零时,噪声的平均功率等于噪声的方差。证明如下: 因为噪声的平均功率 (2-27) 而噪声的方差为 (2-28) 所以,有 (2-29) 上述结论非常有用,在通信系统的性能分析中,常常通过求自相关函数或方差的方法来计算噪声的功率。 由于高斯噪声在后续章节中计算系统抗噪声性能时要反复用到,下面予以进一步讨论。 式(2-26)可用图2-12表示。 由公式(2-26)和图2-12容易看出高斯噪声的一维概率密度函数具有如下特性: (l)对称于直线,即有 (2-30) (2)在内单调上升,在内单调下降,且在点处达到极大值。当时 (3) (2-31) (2-32) 且有 (4)表示分布中心,表示集中的程度。对不同的,表现为的图形左右平移;对不同的,的图形将随的减小而变高和变窄。 (5)当,时,相应的正态分布称为标准化正态分布,这时有 (2-33) 现在再来看正态概率分布函数。 概率分布函数用来表示随机变量x的概率分布情况,按照定义,它是概率密度函数的积分,即 (2-34) 将式(2-26)正态概率密度函数代入,得正态概率分布函数为 (2-35) 这个积分不易计算,常引入误差函数来表述。所谓误差函数,它的定义式为 (2-36) 并称为互补误差函数,记为,即 (2-37) 可以证明,利用误差函数的概念,正态分布函数可表示为 (2-38) 用误差函数表示的好处是,借助于一般数学手册所提供的误差函数表,可方便查出不同x值时误差函数的近似值(参见附录B),避免了式(2-35)的复杂积分运算。此外,误差函数的简明特性特别有助于通信系统的抗噪性能分析,在后续的内容中将会看到,式(2-36)和式(2-37)在讨论通信系统抗噪声性能时,非常有用。 为了方便以后分析,在此给出误差函数和互补误差函数的主要性质: (1)误差函数是递增函数,它具有如下性质 1); 2)。 (2)互补误差函数是递减函数,它具有如下性质 1); 2); 3)。 2.5.3 高斯型白噪声 我们已经知道,白噪声是根据噪声的功率谱密度是否均匀来定义的,而高斯噪声则是根据它的概率密度函数呈正态分布来定义的,那么什么是高斯型白噪声呢? 高斯型白噪声也称高斯白噪声,是指噪声的概率密度函数满足正态分布统计特性,同时它的功率谱密度函数是常数的一类噪声。这里值得注意的是,高斯型白噪声同时涉及到噪声的两个不同方面,即概率密度函数的正态分布性和功率谱密度函数均匀性,二者缺一不可。 在通信系统的理论分析中,特别是在分析、计算系统抗噪声性能时,经常假定系统中信道噪声(即前述的起伏噪声)为高斯型白噪声。其原因在于,一是高斯型白噪声可用具体的数学表达式表述(比如,只要知道了均值和方差,则高斯白噪声的一维概率密度函数便可由式(2-26)确定;只要知道了功率谱密度值/2,高斯白噪声的功率谱密度函数便可由式(2-22)决定),便于推导分析和运算;二是高斯型白噪声确实反映了实际信道中的加性噪声情况,比较真实地代表了信道噪声的特性。 2.5.4 窄带高斯噪声

文档评论(0)

ipad0d + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档