a simple and objective method for reproducible resting state network (rsn) detection in fmri一个简单的和客观的方法可再生的静息状态的网络(工匠们)检测在功能磁共振成像.pdfVIP

a simple and objective method for reproducible resting state network (rsn) detection in fmri一个简单的和客观的方法可再生的静息状态的网络(工匠们)检测在功能磁共振成像.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
a simple and objective method for reproducible resting state network (rsn) detection in fmri一个简单的和客观的方法可再生的静息状态的网络(工匠们)检测在功能磁共振成像

A Simple and Objective Method for Reproducible Resting State Network (RSN) Detection in fMRI 1 1,2 1,2 Gautam V. Pendse *, David Borsook , Lino Becerra 1 P.A.I.N Group, Imaging and Analysis Group (IMAG), McLean Hospital, Harvard Medical School, Belmont, Massachusetts, United States of America, 2 A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America Abstract Spatial Independent Component Analysis (ICA) decomposes the time by space functional MRI (fMRI) matrix into a set of 1-D basis time courses and their associated 3-D spatial maps that are optimized for mutual independence. When applied to resting state fMRI (rsfMRI), ICA produces several spatial independent components (ICs) that seem to have biological relevance - the so-called resting state networks (RSNs). The ICA problem is well posed when the true data generating process follows a linear mixture of ICs model in terms of the identifiability of the mixing matrix. However, the contrast function used for promoting mutual independence in ICA is dependent on the finite amount of observed data and is potentially non-convex with multiple local minima. Hence, each run of ICA could produce potentially different IC estimates even for the same data. One technique to deal with this run-to-run variability of ICA was proposed by [1] in their algorithm RAICAR which allows for the selection of only those ICs that have a high run-to-run reproducibility. We propose an enhancement to the original RAICAR algorithm that enables us to assign reproducibility p -values to each IC and allows for an objective assessment of both within subject and across subjects reproducibility. We call the resu

您可能关注的文档

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档