- 1、本文档共47页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第03章 静电场及边值问题
上式左边第一项仅为变量 r 的函数,第二项仅为变量 z 的函数,因此按照前述理由,它们应分别等于常数,令 即 式中分离常数 kz 可为实数或虚数,其解可为三角函数,双曲函数或指数函数。当 kz 为实数时,可令 式中C, D 为待定常数。 将变量 z 方程代入前式,得 若令 ,则上式变为 上式为标准的柱贝塞尔方程,其解为柱贝塞尔函数,即 至此,我们分别求出了R(r) ,?(?) , Z(z) 的解,而电位微分方程的通解应为三者乘积,或取其线性组合。 式中E, F 为待定常数, 为 m 阶第一类柱贝塞尔函数, 为m阶第二类柱贝塞尔函数。根据第二类柱贝塞尔函数的特性知,当r = 0 时, 。因此,当场存在的区域包括 r = 0 时,此时只能取第一类柱贝塞尔函数作为方程的解。 * 第三章 静电场的边值问题 主 要 内 容 电位微分方程,镜像法,分离变量法。 1. 电位微分方程 已知,电位 ? 与电场强度 E 的关系为 对上式两边取散度,得 对于线性各向同性的均匀介质,电场强度 E 的散度为 那么,线性各向同性的均匀介质中,电位满足的微分方程式为 该方程称为泊松方程。 对于无源区,上式变为 上式称为拉普拉斯方程。 泊松方程的求解。 已知分布在V? 中的电荷 在无限大的自由空间产生的电位为 因此,上式就是电位微分方程在自由空间的解。 应用格林函数 ,即可求出泊松方程的通解为 式中格林函数 为 对于无限大的自由空间,表面 S 趋向无限远处,由于格林函数 及电位 ? 均与距离成反比,而 dS 与距离平方成正比,所以,对无限远处的 S 表面,上式中的面积分为零。 若 V 为无源区,那么上式中的体积分为零。因此,第二项面积分可以认为是泊松方程在无源区中的解,或者认为是拉普拉斯方程以格林函数表示的积分解。 数学物理方程是描述物理量随空间和时间的变化规律。对于某一特定的区域和时刻,方程的解取决于物理量的初始值与边界值,这些初始值和边界值分别称为初始条件和边界条件,两者又统称为该方程的定解条件。静电场的场量与时间无关,因此电位所满足的泊松方程及拉普拉斯方程的解仅决定于边界条件。根据给定的边界条件求解空间任一点的电位就是静电场的边值问题。 通常给定的边界条件有三种类型: 第二类边界条件是给定边界上物理量的法向导数值,这种边值问题又称为诺依曼问题。 第三类边界条件是给定一部分边界上的物理量及另一部分边界上物理量的法向导数值,这种边界条件又称为混合边界条件。 第一类边界条件给定的是边界上的物理量,这种边值问题又称为狄利克雷问题。 对于任何数学物理方程需要研究解的存在、稳定及惟一性问题。 泊松方程及拉普拉斯方程解的稳定性在数学中已经得到证明。可以证明电位微分方程解也是惟一的。 由于实际中定解条件是由实验得到的,不可能取得精确的真值,因此,解的稳定性具有重要的实际意义。 解的惟一性是指在给定的定解条件下所求得的解是否惟一。 解的稳定性是指当定解条件发生微小变化时,所求得的解是否会发生很大的变化。 解的存在是指在给定的定解条件下,方程是否有解。 静电场是客观存在的,因此电位微分方程解的存在确信无疑。 静电场的边界通常是由导体形成的。此时,若给定导体上的电位值就是第一类边界。 已知导体表面上的电荷密度与电位导数的关系为 ,可见,表面电荷给定等于给定了电位的法向导数值。因此,给定导体上的电荷就是第二类边界。 因此,对于导体边界的静电场问题,当边界上的电位,或电位的法向导数给定时,或导体表面电荷给定时,空间的静电场即被惟一地确定。这个结论称为静电场惟一性定理。 2. 镜像法 实质:是以一个或几个等效电荷代替边界的影响,将原来具有边界的非均匀空间变成无限大的均匀自由空间,从而使计算过程大为简化。 依据:惟一性定理。因此,等效电荷的引入必须维持原来的边界条件不变,从而保证原来区域中静电场没有改变,这是确定等效电荷的大小及其位置的依据。这些等效电荷通常处于镜像位置,因此称为镜像电荷,而这种方法称为镜像法。 关键:确定镜像电荷的大小及其位置。 局限性:仅仅对于某些特殊的边界以及特殊分布的电荷才有可能确定其镜像电荷。 (1)点电荷与无限大的导体平面。 ? 介质 导体 q r P ? 介质 q r P h h ? 介质
文档评论(0)