- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Rapid Object Detection using a Boosted Cascade of Simple 采用升压级联简单的快速目标检测
Rapid Object Detection using a Boosted Cascade of Simple Features Original Author Paul Viola Michael Jones In: Proc. Conf. Computer Vision and Pattern Recognition. Volume 1., Kauai, HI, USA (2001) 511–518 Outline Introduction The Boost algorithm for classifier learning Feature Selection Weak learner constructor The strong classifier A tremendously difficult problem Result Conclusion What had we done? A machine learning approach for visual object detection Capable of processing images extremely rapidly Achieving high detection rates Three key contributions A new image representation ? Integral Image A learning algorithm( Based on AdaBoost[5]) A combining classifiers method ? cascade classifiers A demonstration on face detection A frontal face detection system The detector run at 15 frames per second without resorting to image differencing or skin color detection The broad practical applications for a extremely fast face detector User Interface, Image Databases, Teleconferencing The system can be implemented on a small low power devices. Training process for classifier The attentional operator is trained to detect examples of a particular class a supervised training process Cascaded detection process The sub-windows are processed by a sequence of classifiers Our object detection framework Feature Selection The simple features are used Three kinds of features Feature Selection Integral Image Calculating any rectangle sum with integral image Learning Classification Functions The Boost algorithm for classifier learning Weak learner constructor 圖示解說 Training the weak learner 圖解說明 AdaBoosting Place the most weight on the examples must often misclassified by the preceding weak rules Forcing the base learner to focus its attention on the “hardest” examples The Boost algorithm for classifier learning The Big Picture on testing process A tremendously difficult problem How to determ
您可能关注的文档
- 9-第九章 学前儿童语言教育的目标与内容.doc
- 9唇齿相依.pptx
- 9个保护眼睛小技巧.doc
- A320系统知识普及帖之16-前起落架结构.doc
- A320系统知识普及帖之21-主起落架结构.doc
- Accounting Information Systems The Crossroads of Accounting 会计信息系统会计的十字路口.doc
- An Introduction to Qualitative Research - Humanities Office of 定性研究人文办公导论.ppt
- Active and passive microwave remote sensing of land主动和被动微波遥感的土地.ppt
- Analysis of Qualitative Information - UnitingCare Burnside伯恩赛德unitingcare定性信息的分析.doc
- Anne of Green Gables - Natomas Unified School District绿山墙的安妮-萨克拉曼多学区.doc
- SBS改性沥青的技术指标.doc
- PDCA与医疗质量持续改.ppt
- Secret_Base_~君がくれたもの(你给我的所有)~歌词(日文+罗马音+中文翻译+音译).doc
- Servo Control of RF Cavities under Beam Loading在束负载的RF腔伺服控制.doc
- SPC-TLNG-MA-004 LNG柱塞泵橇装技术规格书.doc
- Snrmck焊接专机介绍1500直缝方案送丝.doc
- SSE-160型施工升降机施工方案.doc
- ssw祭十二郎文.ppt
- SEEKOO 物联网电梯卫士盈利性报告书-3.ppt
- Sudden Cardiac Death - University College Dublin UCD is 心脏性猝死-都柏林学院大学是.ppt
文档评论(0)