- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
智能信息处理.doc
专业型硕士学位研究生 学 院: 电子信息工程学院 姓 名: XxX 学 号: Z160442 年 级: 2016级 专 业: 控制工程 科 目: 智能信息处理 任课教师: 曹昕燕(教授) 日 期: 2017年4月20日 基于神经网络的车牌识别 摘要:车牌识别系统(License Plate Recognition,简称LPR)是智能交通系统(ITS)的核心组成部分,在现代交通管理系统中发挥着举足轻重的作用。本文运用神经网络算法从车牌图像预处理、车牌定位、车牌字符分割和车牌字符识别这几个方面对车牌识别技术进行研究,运用MATLAB仿真,实现对车牌识别系统的设计。 关键词:神经网络算法;图像预处理;车牌定位;车牌字符分割;车牌识别 0引言 随着我国经济的快速发展,人民生活水平的不断提高,私有车辆越来越多,对交通控制、安全管理的要求也日益提高,智能交通管理(Intelligence Transportation System,简称ITS)已成为当前交通管理发展的主要方向,而车牌识别技术(LPR)作为智能交通系统的核心,起着举足轻重的作用,利用该技术可以实现对车辆的自动登记、验证、监视和报警,高速公路收费,对停车场进行管理,特殊场所车辆的出入许可等[1]。 汽车牌照自动识别系统是应用图像处理技术、模式识别技术和神经网络技术,从复杂背景中准确提取、识别出汽车牌照。自动车牌识别技术是解决交通管理问题的重要手段,是计算机图像处理技术和模式识别技术在智能交通领域的典型应用。由于神经网络具有良好的自学习和自适应能力,同时有很强的分类能力、容错能力和鲁棒性,可以实现输入到输出的非线性映射,可在有干扰的情况下对字符实现分类识别,能够解决车牌字符速度和识别正确率等问题,故被广泛地用于汽车牌照识别[2]。 本文设计使用BP神经网络运用MATLAB仿真,对车牌字符进行识别。 1系统总体设计 车牌识别系统的构成如图1所示: 图1 车牌识别系统的构成 其中各个模块的研究内容包括: (1)车牌图像采集:通过安装在过道路口或者车辆出入通道的摄像机实时捕捉车辆视屏图像,并传输到计算机上以便于实时的处理。 (2)车牌图像预处理:主要完成包括图像灰度变化,图像边缘检测、图像二值化等来突出车牌的特征,以便于更好的车牌定位。 (3)车牌定位:从摄入的汽车图像中找到车牌的位置,并把含有车牌图像的区域提取出来,以供后端的字符分割处理。 (4)车牌字符分割:对有哪些信誉好的足球投注网站定位后的车牌区域进行字符分割, 将车牌分为N个单一的字符。 (5)车牌识别:对于提取出的单个字符,先进行归一化操作,再运用训练好的神经网络进行字符识别。 (6)结果显示:显示处理后的车牌并与原始车牌相比较。 2各个模块设计 2.1车牌图像采集 当系统发现有车辆通过感应线圈或监视图像发生变化时,触发图像采集系统,通过CCD摄像机摄取采集出车牌图像,然后车牌自动识别模块对车牌图像进行预处理、车牌定位、字符分割、字符识别等一系列处理识别出车牌号码,识别结果和原始车牌图像通过网络传输至监控中心,留待以后车牌查询和交通流量统计[3]。本次设计主要是实现对已经采集到的车牌图像进行识别。 2.2车牌图像预处理 汽车牌照中的字符主要由有限汉字、字母和数字组成,采用固定的印刷体格式。由于图像上字符光照不均、车牌本身污损、汽车行驶速度较快、牌照颜色类型较多、拍摄角度及地况等主客观原因会使车牌字符发生畸变,从而造成识别上的困难,因此,为提高牌照的字符识别率, 必须进行预处理, 以便得到较为清晰的待识别的单个字符.这些预处理包括灰度变换、边缘检测、腐蚀、填充、形态滤波处理等[4]。预处理的效果对随后的定位处理有很大的影响,所以选择可靠的预处理算法也是非常重要的。图像预处理程序设计流程图如下: 图2 车牌图像预处理流程 预处理的结果显示如下图3 图3 车牌图像预处理 2.3车牌定位 车牌定位方法的出发点是利用车牌区域的特征来判断牌照,将车牌区域从整幅车辆图像中分割出来。在车牌识别中,定位的成功与否以及定位的准确程度将会直接决定后期能否进行车牌识别以及识别的准确度。 车牌定位方法涉及到的具体方法有: 基于边缘检测的方法、区域生长法,构造灰度模型法,二值图像的数学形态学运算法,灰度图像的数学形态学运算法,自适应边界有哪些信誉好的足球投注网站法,DFT变换法,模糊聚类法等[5]。这里采用基于边缘检测的方法,首先去除图像中的背景,然后得到汽车牌照的特征区域,再通过一定的方式定位这个区域,最后把汽车牌照从图像中分割出来。 所谓“边缘”就是指其周围像素灰度有阶跃变化的那些像素的集合。“边缘”的两侧分属于两个区域,每个区域的灰度均匀一致,而这两个区域的灰度在特征上存在一定的差异。边
文档评论(0)