一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后 .doc

一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后 .doc

  1. 1、本文档共11页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
一需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后

一 需求分析 1.本程序演示的是用简单遗传算法随机一个种群,然后根据所给的交叉率,变异率,世代数计算最大适应度所在的代数 2.演示程序以用户和计算机的对话方式执行,即在计算机终端上显示“提示信息”之后,由用户在键盘上输入演示程序中规定的命令;相应的输入数据和运算结果显示在其后。 3.测试数据 输入初始变量后用y=100*(x1*x1-x2)*(x1*x2-x2)+(1-x1)*(1-x1)其中-2.048=x1,x2=2.048作适应度函数求最大适应度即为函数的最大值 二 概要设计 1.程序流程图 2.类型定义 int popsize; //种群大小 int maxgeneration; //最大世代数 double pc; //交叉率 double pm; //变异率 struct individual { char chrom[chromlength+1]; double value; double fitness; //适应度 }; int generation; //世代数 int best_index; int worst_index; struct individual bestindividual; //最佳个体 struct individual worstindividual; //最差个体 struct individual currentbest; struct individual population[POPSIZE]; 3.函数声明 void generateinitialpopulation(); void generatenextpopulation(); void evaluatepopulation(); long decodechromosome(char *,int,int); void calculateobjectvalue(); void calculatefitnessvalue(); void findbestandworstindividual(); void performevolution(); void selectoperator(); void crossoveroperator(); void mutationoperator(); void input(); void outputtextreport(); 4.程序的各函数的简单算法说明如下: (1).void generateinitialpopulation ()和void input ()初始化种群和遗传算法参数。 input() 函数输入种群大小,染色体长度,最大世代数,交叉率,变异率等参数。 (2) void calculateobjectvalue();计算适应度函数值 。 根据给定的变量用适应度函数计算然后返回适度值。 (3)选择函数selectoperator() 在函数selectoperator()中首先用rand ()函数产生0~1间的选择算子,当适度累计值不为零时,比较各个体所占总的适应度百分比的累计和与选择算子,直到达到选择算子的值那个个体就被选出,即适应度为fi的个体以fi/∑fk的概率继续存在 能被选中,以便增加下一代群体的多样性。 (4)染色体交叉函数crossoveroperator() 这是遗传算法中的最重要的函数之一,它是对个体两个变量所合成的染色体进行交叉,而不是变量染色体的交叉,这要搞清楚。首先用rand ()函数产生随机概率,若小于交叉概率,则进行染色体交叉,同时交叉次数加1。这时又要用rand()函数随机产生一位交叉位,把染色体的交叉位的后面部分交叉即可;若大于交叉概率,则进行简单的染色体复制即可。 (5)染色体变异函数mutation() 变异是针对染色体字符变异的,而不是对个体而言,即个体变异的概率是一样。随机产生比较概率,若小于变异概率,则1变为0,0变为1,同时变异次数加1。 (6)long decodechromosome(char *,int,int) 本函数是染色体解码函数,它将以数组形式存储的二进制数转成十进制数,然后才能用适应度函数计算。 (7)void findbestandworstindividual()本函数是求最大适应度个体的,每一代的所有个体都要和初始的最佳比较,如果大于就赋给最佳。 (8)void outputtextreport () 输出种群统计结果 输出每一代的种群的最大适应度和平均适应度,最后输出全局最大值 三 运行环境 本程序的开发工具是VC++,在VC

文档评论(0)

magui + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

版权声明书
用户编号:8140007116000003

1亿VIP精品文档

相关文档