1 结合MSCRs与MSERs的自然场景文本检测方法.DOC

1 结合MSCRs与MSERs的自然场景文本检测方法.DOC

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
1 结合MSCRs与MSERs的自然场景文本检测方法

中图法分类号:TP391.4 文献标识码:A 文章编号:1006-8961(年) - 结合MSCRs与MSERs场景文本 易尧华 , 申春辉 , 刘菊华 , 卢利琼 武汉大学印刷与系武汉 430072 摘 要:目的:目前,基于MSERs(maximally stable extremal regions)的文本检测方法是自然场景图像文本检测的主流方法。但是自然场景图像中部分文本的背景复杂多变,MSERs算法无法将其准确提取出来,降低了该类方法的鲁棒性。本文针对自然场景多变的特点,MSCRs(maximally stable color regions)算法自然场景文本检测,提出MSCRs与MSERs的场景文本检测方法MSCRs算法与MSERs算法提取区域然后区域的特征训练森林字符分类器对候选区域进行得到字符区域区域一致性和几何邻接关系字符检测结果方法在 2013上的召回率、准确率和F值分别为%、%和77.5%,相对于其他的召回率和F有所提高实验结果。检测MSCRs;MSERs Natural scene text detection method by integrating MSCRs into MSERs Yi Yaohua, Shen Chunhui, Liu JuHua, Lu Liqiong School of Printing and Packaging, Wuhan University, Wuhan 430072 Abstract: Objective: Text detection methods based on the maximally stable extremal regions (MSERs) algorithm are now widely used in natural scene text detection. However, text regions in natural scene images can have complex backgrounds that differ from those in documents and business cards, which cannot be accurately extracted by the MSERs algorithm. A text detection method is proposed for natural scene images by integrating the maximally stable color regions (MSCRs) into MSERs in this study to overcome the said problem. Method: The character candidates are first extracted with both the MSCRs and MSERs algorithms. Parts of the non-character candidates are then eliminated according to the geometric information. The texture features are exploited to distinguish the character and non-character candidates, and a random forest character classifier is trained. The non-character candidates are then eliminated according to the classification result of the character classifier. Finally, the single character candidates are grouped into text regions according to the color similarity and geometric adjacency information. Result: The proposed natural scene text detection method achieved 71.9%, 84.1%, and 77.5% in recall rate, precision rate, and f-score on the ICDAR 2013 database, respectively. The recall rate and f-score improved, unlike other state-of-th

文档评论(0)

youbika + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档