- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
计量经济学课件ch08
Economics 20 - Prof. Anderson What is Heteroskedasticity Recall the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant If this is not true, that is if the variance of u is different for different values of the x’s, then the errors are heteroskedastic Example: estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment Why Worry About Heteroskedasticity? OLS is still unbiased and consistent, even if we do not assume homoskedasticity The standard errors of the estimates are biased if we have heteroskedasticity If the standard errors are biased, we can not use the usual t statistics or F statistics or LM statistics for drawing inferences Variance with Heteroskedasticity Variance with Heteroskedasticity Robust Standard Errors Now that we have a consistent estimate of the variance, the square root can be used as a standard error for inference Typically call these robust standard errors Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n – k – 1) As n → ∞ it’s all the same, though Robust Standard Errors (cont) Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg A Robust LM Statistic Run OLS on the restricted model and save the residuals ? Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ?1, ?2, …, ?q Regress a variable defined to be = 1 on ?1 ?, ?2 ?, …, ?q ?, with no intercept The LM statistic is n – SSR1, where SSR1 is the sum of squared residuals from this final regression Testing for Heteroskedasticity Es
您可能关注的文档
最近下载
- (正式版)SH∕T 3553-2024 石油化工汽轮机施工及验收规范.pdf VIP
- 电气专项施工方案.doc VIP
- 个人简历——【标准模板】.doc VIP
- 软件开发工具unsp ide使用说明书.pdf VIP
- 【课堂新坐标(教师用书)高中英语 Unit 3 Period V Culture Corner & Bulletin Board课件 北师大版必修1.ppt VIP
- 老年病多学科诊疗模式.pptx VIP
- GPX 生产手册.pdf VIP
- 老年病多学科诊疗模式.pptx VIP
- 【课堂新坐标(教师用书)高中英语 Unit 1 Lifestyles单元归纳提升课件 北师大版必修1.ppt VIP
- 新课标高中英语 教师用书配套资料 Unit1~2 阶段综合检测 北师大版必修1.doc VIP
文档评论(0)