计量经济学课件ch08.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
计量经济学课件ch08

Economics 20 - Prof. Anderson What is Heteroskedasticity Recall the assumption of homoskedasticity implied that conditional on the explanatory variables, the variance of the unobserved error, u, was constant If this is not true, that is if the variance of u is different for different values of the x’s, then the errors are heteroskedastic Example: estimating returns to education and ability is unobservable, and think the variance in ability differs by educational attainment Why Worry About Heteroskedasticity? OLS is still unbiased and consistent, even if we do not assume homoskedasticity The standard errors of the estimates are biased if we have heteroskedasticity If the standard errors are biased, we can not use the usual t statistics or F statistics or LM statistics for drawing inferences Variance with Heteroskedasticity Variance with Heteroskedasticity Robust Standard Errors Now that we have a consistent estimate of the variance, the square root can be used as a standard error for inference Typically call these robust standard errors Sometimes the estimated variance is corrected for degrees of freedom by multiplying by n/(n – k – 1) As n → ∞ it’s all the same, though Robust Standard Errors (cont) Important to remember that these robust standard errors only have asymptotic justification – with small sample sizes t statistics formed with robust standard errors will not have a distribution close to the t, and inferences will not be correct In Stata, robust standard errors are easily obtained using the robust option of reg A Robust LM Statistic Run OLS on the restricted model and save the residuals ? Regress each of the excluded variables on all of the included variables (q different regressions) and save each set of residuals ?1, ?2, …, ?q Regress a variable defined to be = 1 on ?1 ?, ?2 ?, …, ?q ?, with no intercept The LM statistic is n – SSR1, where SSR1 is the sum of squared residuals from this final regression Testing for Heteroskedasticity Es

文档评论(0)

dajuhyy + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档