- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Ortega-Martorell et al. BMC Bioinformatics 2012, 13:38
/1471-2105/13/38
RESEARCH ARTICLE Open Access
Non-negative matrix factorisation methods for
the spectral decomposition of MRS data from
human brain tumours
1,2,3 4* 5 2,1,3 1,2,3*
Sandra Ortega-Martorell , Paulo JG Lisboa , Alfredo Vellido , Margarida Julià-Sapé and Carles Arús
Abstract
Background: In-vivo single voxel proton magnetic resonance spectroscopy (SV 1H-MRS), coupled with supervised
pattern recognition (PR) methods, has been widely used in clinical studies of discrimination of brain tumour types
and follow-up of patients bearing abnormal brain masses. SV 1H-MRS provides useful biochemical information
about the metabolic state of tumours and can be performed at short ( 45 ms) or long ( 45 ms) echo time (TE),
each with particular advantages. Short-TE spectra are more adequate for detecting lipids, while the long-TE
provides a much flatter signal baseline in between peaks but also negative signals for metabolites such as lactate.
Both, lipids and lactate, are respectively indicative of specific metabolic processes taking place. Ideally, the
information provided by both TE should be of use for clinical purposes. In this study, we characterise the
performance of a range of Non-negative Matrix Factorisation (NMF) methods in two respects: first, to derive
sources correlated with the mean spectra of known tissue types (tumours and normal tissue); second, taking the
best performing NMF method for source separation, we compare its accuracy for class assignment when using the
mixing matrix directly as a basis for classification, as against using the method for dimensionality reduction (DR).
For this, we used SV 1H
您可能关注的文档
- CHINASCIENCEANDTECHNOLOGY创新.PDF
- CHINAUNICOM(HONGKONG)LIMITED创新.PDF
- 染色体荧光原位杂交技术讲述.ppt
- 深圳科士达科技股份有限公司分析.PDF
- 日本本州全景赏樱6日豪华游讲述.doc
- CMSC426ImageProcessing(ComputerVision)创新.ppt
- CognitiveRadioLTEHetNets创新.PDF
- 深圳市大富科技股份有限公司分析.PDF
- Collaborativelteringmodelsfor创新.PDF
- 深圳市海天雄电子有限公司分析.PDF
- 项目与项目管理分析.PDF
- ICS点击此处添加ICS号创新.PDF
- ideapadMIIX510-12IKBLTE机型80XE创新.PDF
- IIHelseogsykdom创新.PDF
- IMEIDatabaseApplicationForms创新.PDF
- 需求旺、产能放,动力足、业绩好分析.PDF
- IMSAnArchitectureforConvergentNextGeneration创新.ppt
- 许继电气股份有限公司发行股份购买资产暨关联交易报告书分析.PDF
- IncreasesInternalTestCoveragetoOver90%forLTE创新.PDF
- INDEXTOTHENAMEDSHABTISINTHE创新.doc
文档评论(0)