研究生课程考试小论文格式要求内容.docVIP

研究生课程考试小论文格式要求内容.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
研究生课程考试小论文格式要求内容

上海大学 2010~ 2011学年 秋 季学期研究生课程考试 小论文 课程名称: 数字图像处理 课程编号: 072001808 论文题目: 视频中的运动目标分割与阴影消除 研究生姓名: 高书德 学 号: 论文评语: 成 绩: 任课教师: 评阅日期: 视频中的运动目标分割与阴影消除高书德 2012年3月4日 摘 要:针对目前运动对象分割不完整,以及存在阴影和鬼影对运动目标分割的影响,提出了一种基于复杂背景下的运动目标分割与阴影消除方法。首先利用高斯混合模型进行初始背景建模并提取初始前景对象,将当前视频帧和背景模型进行差分运算,且通过多尺度小波变换时空域特征,将多尺度分析和图像分割相结合,压制阴影并消除鬼影对运动目标分割的影响。通过实验对比,所提方法能有效地从复杂背景视频图像中提取运动目标且具有强的鲁棒性。 关键字:目标分割;阴影消除;高斯混合模型;小波变换 Segmentation of Moving Targets and Shadows Elimination based on Complex Background Abstract: Aiming some existing limits in foreground objects segmentation such as incomplete segmentation of moving targets, moving shadow and ghosts, a novel segmentation method and shadows elimination from a complex background is proposed. Firstly, a Gaussian mixture model (GMM) is adopted to construct background model and extract some foregrounds. Background subtraction is performed between the current frame and the previous constructed background model. According to some characteristics of multi-scale wavelet transform in spatial and temporal fields, multi-scale analysis is combined with image segmentation to suppress shadows and eliminate ghost in the video. Experimental results show that the proposal can effectively segment the moving targets from video with a complex background and eliminate shadows and ghosts by comparisons. Keywords: Target segmentation; Shadows elimination; Gaussian mixture model; Wavelet transform 1. 引言 随着视频多媒体的不断发展,视频运动目标分割已经成为计算机视觉研究的核心课题之一[1-4],它不仅可以从视频流中分割出目标和背景,又是目标跟踪、识别和分析的基础。目前,运动物体的视频分割与提取在视频监控、人机交互、娱乐动画、多媒体、通讯、军事以及体育等领域都有着极为广泛的应用前景,引起了国际上许多著名科研机构以及研究人员的兴趣。 目前已有运动目标分割方法主要有:背景差分法、时域差分运动检测法和光流(Optical Flow)法。其中,背景差分法利用当前图像与背景图像的差分来检测运动区域,但这种方法对光照变化非常敏感。为克服上述不足,Hou等人利用自适应的混合高斯模型进行背景建模,并利用在线估计来更新模型处理光照变化。但该方法很难抑制阴影所造成的影响。Huang等人提出了一种融合边缘检测的运动前景分割方法,但是此方法对运动前景的分割结果不完整,容易出现空洞;Bayona等人提出了一种基于复杂背景下的前景区

文档评论(0)

2017ll + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档