第八讲回归课题.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
(2)第二部分输出的是观察值Linear,Cubic,Power和Exponential 4种曲线预测值的对比图,如图7-21所示。 * (3)由于在图7-19所示“Curve Estimation”对话框(三)中选了“Save”项,且在图7-20的“Save Variables”框中选择了“Predicted values”选项和“Predict Cases”框中选择了“Predict through”项,并且在“Observation”框中键入了“31”,因此在SPSS数据编辑窗口中就新增了fit_1,fit_2,fit_3和fit_4等4个变量的预测值,同时在窗口下方还新增了两个个案,它们分别代表对2007年和2008年的预测值。如图7-22所示。 * * 7.7.1 统计学上的定义和计算公式 7.7 含虚拟自变量的回归分析 定义:前面几节所讨论的回归模型中,因变量和自变量都是可以直接用数字计量的,即可以获得其实际观测值(如收入、支出、产量、国内生产总值等),这类变量称作数量变量、定量变量或数量因素。然而,在实际问题的研究中,经常会碰到一些非数量型的变量,如性别、民族、职业、文化程度、地区、正常年份与干旱年份、改革前与改革后等定性变量。 * 在建立一个实际问题的回归方程时,经常需要考虑这些定性变量。例如,建立粮食产量预测方程就应考虑到正常年份与受灾年份的不同影响;建立空调的销售模型时,除了要考虑居民收入和商品价格这两个量的因素之外,还必须将“季节”这个质的因素,作为一个重要解释变量。 * 由于受到质的因素影响,回归模型的参数不再是固定不变的。例如,在空调销售模型中,收入、价格与空调销售额的关系是随着季节变化而改变的,也就是说,在不同的季节回归模型的参数也会有所不同。再如,我国居民的消费行为在改革开放前后大不相同,因此消费函数的参数也会发生变化。显然,如果忽略质的因素,仍把模型中的参数看作是固定不变的,得到的参数估计量就不能正确描述经济变量之间的关系。 * 在回归分析中,对一些自变量是定性变量的先作数量化处理,处理的方法是引进只取“0”和“1”两个值的0?1型虚拟自变量。当某一属性出现时,虚拟变量取值为“1”,否则取值为“0”。例如,令“1”表示改革开放以后的时期,“0”则表示改革开放以前的时期。再如,用“l”表示某人是男性,“0”则表示某人是女性。虚拟变量也称为哑变量。需要指出的是,虽然虚拟变量取某一数值,但这一数值没有任何数量大小的意义,它仅仅用来说明观察单位的性质和属性。 * 如果在回归模型中需要引入多个0?1型虚拟变量D时,虚拟变量的个数应按下列原则来确定:对于包含一个具有k种特征或状态的质因素的回归模型,如果回归模型不带常数项,则需引入k个0?1型虚拟变量D;如果有常数项,则只需引入k?1个0?1型虚拟变量D。当k=2时,只需要引入一个0?1型虚拟变量D。 * 计算公式如下。 下面以自变量所含定性变量是一个还是多个来分别说明如何构造含虚拟自变量的回归模型。 (1)自变量中只含一个定性变量,且这个定性变量只有两种特征的简单情况时。 (2)自变量中含多个定性变量时。 * ? 研究问题 研究采取某项保险革新措施的速度y与保险公司的规模x1及其类型d之间的关系,数据如表7-6所示。 7.7.2 SPSS中实现过程 * 表7-6 保险公司革新情况 i y x1 d 1 17 151 0 2 26 92 0 3 21 175 0 4 30 31 0 5 22 104 0 6 0 277 0 7 12 210 0 8 19 120 0 9 4 290 0 10 16 238 0 11 28 164 1 12 15 272 1 13 11 295 1 14 38 68 1 15 31 85 1 16 21 224 1 17 20 166 1 18 13 305 1 19 30 124 1 20 14 246 1 * ? 实现步骤 图7-23 “Linear Regression”对话框(三) * ? 实现步骤 图7-9 “Simple Scatterplot”对话框 * 图7-10 散点图 * 图7-11 “Curve Estimation”对话框(一) * 7.4.3 结果和讨论 (1)第一部分输出相关统计量和参数的值,如下表所示。 * (2)第二部分输出的是观察值和Cubic,Power两种曲线预测值的对比图,如图7-12所示。 * 7.5.1 统计学上的定义和计算公式 7.5 曲 线 估 计 定义:在一元回归分析中,一般首先绘制自变量和因变量间的散点图,然后通过数据在散点

文档评论(0)

***** + 关注
实名认证
文档贡献者

我是自由职业者,从事文档的创作工作。

1亿VIP精品文档

相关文档