- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
数据挖掘如何提高零售业销售额
客户关系管理课程设计(论文) 题目 客户关系管理在中小企业中的重要性分析 学院(部)商务策划学院 专业 电子商务 学生姓名 徐宁 学号 2011043126 年级 2011级 指导教师 詹川 职称 博士 2014年4月22日 数据挖掘如何提高零售业销售额 1引言: 总部位于美国阿肯色州的世界著名商业零售连锁企业沃尔玛拥有世界上最大的数据仓库系统。为了能够准确了解顾客在其门店的购买习惯,沃尔玛利对其顾客的购物行为进行购物篮分析,想知道顾客经常一起购买的商品有哪些。沃尔玛数据仓库里集中了其各门店的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用NCR数据挖掘工具对这些数据进行分析和挖掘。一个意外的发现是:跟尿布一起购买最多的商品竟是啤酒! 这是数据挖掘技术对历史数据进行分析的结果,反映数据内在的规律。那么这个结果符合现实情况吗?是否是一个有用的知识?是否有利用价值?于是,沃尔玛派出市场调查人员和分析师对这一数据挖掘结果进行调查分析。经过大量实际调查和分析,揭示了一个隐藏在尿布与啤酒背后的美国人的一种行为模式:在美国,一些年轻的父亲下班后经常要到超市去买婴儿尿布,而他们中有30%~40%的人同时也为自己买一些啤酒。产生这一现象的原因是:美国的太太们常叮嘱她们的丈夫下班后为小孩买尿布,而丈夫们在买尿布后又随手带回了他们喜欢的啤酒。 既然尿布与啤酒一起被购买的机会很多,于是沃尔玛就在其一个个门店将尿布与啤酒并排摆放在一起,结果是尿布与啤酒的销售量双双增长. 2 零售业概述 零售商业企业是指向批发商业企业或生产企业购进商品,再将商品直接出售给最终消费者的商业企业。其特征是: 1)?? 销售对象是直接消费者,而不是那些进行转卖或生产加工的使用者; 2)?? 零售商业企业的交易次数颇繁,平均每次交易额较小; 3)?? 零售商业企业是商品流通的最终环节,零售企业的交易活动一旦成功、便意味着商品脱离了流通领域而进入消费领域,从而实现了商品价值和使用价值; 4)?? 就商品而言,除了专业的特卖店,一般零售商所包含的商品品种巨大,零售商采取的商品销售方式很多,如经销、代销、联销等。 3 数据挖掘技术 数据挖掘(Data Mining)是一个萃取(Extracting)和展现(Presenting)新知识的流程。通过分析具体数据,发现确定有效的、新颖的、有潜在使用价值的、以往不为人知的、最终可理解的信息,为企业良好运营和决策部门做出重要决策提供帮助。 数据挖掘涉及的学科领域和方法很多。根据挖掘任务分可分为分类或预测模型发现、数据总结、聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常和趋势发现等等;根据挖掘方法可分为:机器学习方法、统计方法、神经网络方法和数据库方法。机器学习方法包括:归纳学习方法(决策树、规则归纳等)、基于范例学习、遗传算法等;统计方法包括:回归分析(多元回归、自回归等)、判别分析(贝叶斯判别、费歇尔判别、非参数判别等)、聚类分析(系统聚类、动态聚类等)、探索性分析(主元分析法、相关分析法等)等;神经网络方法包括:前向神经网络(BP算法等)、自组织神经网络(自组织特征映射、竞争学习等)等;数据库方法主要包括多维数据分析(OLAP)。 数据挖掘在很多行业都可以有较好的应用。如:零售业、银行金融、制造、保险、公共设施、政府、教育、远程通讯、软件开发等领域。据报导,数据挖掘的投资回报率高达400%甚至十倍。 4 零售业中的数据挖掘 在零售业应用领域,利用数据挖掘技术在很多方面都有卓越表现: 4.1 了解销售全局 通过分类信息,按商品种类、销售数量、商店地点、价格和日期等了解每天的运营和财政情况,对销售的每一点增长、库存的变化以及通过促销而提高的销售额都可了如指掌。 4.2 商品分组布局 分析顾客的购买习惯,考虑购买者在商店里所穿行的路线、购买时间和地点、掌握不同商品一起购买的概率;通过对商品销售品种的活跃性分析和关联性分析,建立商品设置的最佳结构和商品的最佳布局。 4.3 降低库存成本 通过数据挖掘系统,将销售数据和库存数据集中起来,通过挖掘分析,以决定对哪些商品货物进行增减,确保正确的库存。 4.4 市场和趋势分析 利用数据挖掘工具和统计模型对零售数据仓库的数据仔细研究,以分析顾客的购买习惯、广告成功率和其它战略性信息。 4.5 有效的商品促销 通过对一种厂家商品在各连锁店的市场共享分析,客户统计以及历史状况的分析,来确定销售和广告业务的有效性。通过对顾客购买偏好的分析,确定商品促销的目标客户,以此来设
文档评论(0)