A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography.pdfVIP

A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography.pdf

Computers and Mathematics with Applications 71 (2016) 1537–1559 Contents lists available at ScienceDirect Computers and Mathematics with Applications journal homepage: /locate/camwa A new linearized split Bregman iterative algorithm for image reconstruction in sparse-view X-ray computed tomography Chong Chen, Guoliang Xu ? LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190, PR China article info Article history: Received 15 June 2015 Received in revised form 15 November 2015 Accepted 9 January 2016 Available online 26 March 2016 Keywords: Linearized split Bregman iteration Compressed sensing Robust image reconstruction Sparse views X-ray computed tomography abstract In this paper, a new linearized split Bregman iterative algorithm is proposed for sparseview X-ray computed tomography, which can avoid solving a large-scale and unstructured linear system in each iteration. Remarkably, our method can be generalized to efficiently resolve some other image processing and analysis models, for instance, the robust com- pressed sensing, the total variation-?1, and the ?1–?1. We also give rigorous proofs for the convergence of the proposed method under appropriate conditions for the aforementioned problems. Experimental results demonstrate that our algorithm has better performance in terms of reconstruction quality, effectiveness and robustness, compared with some other methods (e.g. gradient-flow-based semi-implicit finite element method, split Bregman, etc.) for the robust image reconstruction in sparse-view X-ray computed tomography. ? 2016 Elsevier Ltd. All rights reserved. 1. Introduction Motivations. In modern commercial X-ray computed tomography (CT) imaging, the projections are generally detected at a large number (about 984) of views from the patient for high-quality image reconstruction by currently analyticbased algorithms, for instance, filtered back-projection (FBP) method [1–4]. However, data coll

您可能关注的文档

文档评论(0)

2752433145 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档