超分辨率图像恢复算法综述.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
超分辨率图像恢复算法综述.doc

超分辨率图像恢复算法综述   【摘 要】 图像超分辨率是指从一序列低分辨率观测图像中恢复高分辨率图像,广泛用于视频监控、模式识别、军事侦察、遥感检测和医学诊断等领域,已成为图像处理领域最为活跃的研究方向之一。介绍了超分辨率图像恢复的经典算法,对比分析了各方法的优缺点,提出了超分辨率图像恢复的研究方向与展望,为其进一步发展提供了一定的理论基础。   【关键词】超分辨率 高分辨率图像 低分辨率图像 恢复   【Abstract】 Super-resolution image restoration is widely used in video surveillance, pattern recognition, military reconnaissance, remote sensing, medical diagnosis etc., which has become one of the most active research areas in image processing. Firstly, classical algorithms of Super-resolution image restoration were introduced. Secondly, advantages and disadvantages of the above methods were compared and analyzed. Thirdly, research directions and prospects were proposed. It is hoped to provide some theoretical basis for further development.   【Key words】 Super-resolution;high-resolution image; low-resolution image; restoration   图像超分辨率(Super-resolution: SR)技术是一种提高图像空间分辨率的“软处理”方法,在不改变现有硬件设备条件的基础上通过信号处理方法获取更高分辨率、更高清晰度的图像,由一系列低分辨率(Low-resolution: LR)、低质量图像序列恢复出高分辨率(High-resolution: HR)、高质量图像的处理过程。图像超分辨率是通过对HR图像一系列降质处理(相当于低通滤波器)后得到的观测图像进行反求原HR图像的过程,属于图像逆问题,也属于数学病态问题。   自Harris和Goodman提出SR重建概念以来,该技术就受到广泛关注,主要经历了静态图像、单视频和多视频SR重建三个阶段,主要算法有基于频域插值的方法、非均匀采样内插法、迭代反投影法、凸集投影法、正则化重建法、最大后验概率/凸集投影混合法和基于学习的方法。SR图像恢复应用广泛,已成为图像处理领域最为活跃的研究方向之一。通过SR图像恢复能有效提高现有监控设备的分辨率水平和监控能力,对推进智能视频监控的发展[1],对“数字城市”、“平安城市”建设等,都具有重要意义。   1 超分辨率图像恢复算法   1.1 基于频域插值的方法   先使用傅里叶变换将图像变换到频域,再利用位移特性观测模型解决图像的内插问题。在处理过程中,假设LR图像序列无噪声,且原始模拟图像的频率带限,利用多幅图像间离散和连续傅里叶变换间的平移特性以及混叠关系来获得HR图像。此方法理论简单,运算复杂度低,但忽略了观测模型中光学系统的诸多因素的影响,仅局限于全局平移运动模型下应用。很多学者对此进行改进,Tekalp等[2]考虑了线性空不变点扩散函数和观测噪声的影响,采用最小二乘法计算系统方程的解;Kim等[3]也考虑了噪声的情况,用加权最小二乘法进行计算;Rhee和Kang[4]提出采用离散余弦变换代替傅里叶变换,减少存储资源的需求,提升了计算效率。但始终无法突破Tsai中整体平移相似的假设,仅含有限的空域先验知识,因此只能在全局平移运动和线性空间不变模糊模型中使用。因此,实际工程应用中难以实用。   1.2 非均匀采样内插法   属于空域插值放大法,包括运动估计、非均匀内插、图像去模糊和去噪三个方面[5]。在运动估计中,选择一幅参考图像,根据某一运动模型,求出其他图像与参考图像之间的运动参数,并根据此参数将所有LR观测图像投影到参考图像对应的高分辨率网格上,得到非均匀分布的空间采样图,然后用非均匀内插法内插出所有整数格网的像素值,接着进行去模糊和去噪处理,得到HR的图像,如图1所示。   此方法计算量小、模型简单,但需要假定所有的LR图像的噪声和模糊特征一致,不使用先验约束,恢复效果不佳,不能保证最优性。

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档