基于鱼群神经网络的地下水脆弱性评价与分析.docVIP

基于鱼群神经网络的地下水脆弱性评价与分析.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
基于鱼群神经网络的地下水脆弱性评价与分析.doc

基于鱼群神经网络的地下水脆弱性评价与分析   摘 要:地下水脆弱性评价是区域进行地下水资源保护和管理的重要依据。针对BP神经网络技术在对地下水脆弱性进行评价时存在的收敛速度慢、不易获得全局最优解、诊断精度低以及网络结构不确定等缺点,而人工鱼群算法具有较优的全局收敛能力及较快的寻优速度。因此,本文利用人工鱼群算法对BP神经网络的初始权值和阈值进行了优化,建立了一种新的地下水脆弱性评价模型,并将该模型应用到具体的评价实例中。结果表明,人工鱼群神经网络算法具有收敛速度快及泛化能力强的优点,为地下水脆弱性评价提供一种高效、准确及可靠的方法。   关键词:地下水脆弱性;评价;人工鱼群算法;BP神经网络   中图分类号:TP27 文献标识码:A   众所周知,水是人类社会赖以生存和发展必不可少的宝贵资源,地下水是水资源的重要组成部分,并已被广泛开发和利用,在干旱半干旱地区则是主要的生活及工业用水来源。近年来,由于工业化、城市化进程的加快,全球范围内的地下水资源正遭受不同程度的污染和破坏,造成水资源短缺,并相继出现了一系列复杂的环境地质问题。目前应用较广泛的BP神经网络评价算法存在着网络参数难确定、收敛速度较慢且易陷入极小值等问题。为了解决上述问题,本文应用鱼群算法对BP神经网络进行了改进,结合地下水安全评价实例进行了测试,并将测试数据与标准BP神经网络进行了比较与分析,取得了理想的结果。   1.基本BP神经网络算法   BP神经网络算法是一种采用误差反向传播的多层前馈感知器。其特点是具有分布式的信息存储方式,能进行大规模并行处理,并具有较强的自学习及自适应能力。BP网络由输入层(感知单元)、计算层(隐藏层)、输出层3部分组成。输入层神经元首先将输入信息向前传递至隐含层节点,经过激活函数预处理后,隐层节点再将输出信息传送至输出层得到结果输出。输入层与输出层节点的个数取决于输入、输出向量的维数,隐含层节点个数目前并没有统一的标准进行参考,需通过反复试错来确定。根据Kolmogorov定理,具有一个隐层的3层BP神经网络能在闭集上以任意精度逼近任意非线性连续函数,所以本文选择单隐层的BP神经网络。   2.人工鱼群算法   2.1 基本原理   通过对鱼类觅食的观察可知,鱼类一般能自行或者尾随其他同伴找到食物数量相对充足的地方。因此,一般鱼类数量较多的地区即为食物相对充足的区域。人工鱼群算法是指通过长期对鱼类觅食行为的观察,构造人工鱼来模拟鱼类的觅食、群聚、尾随以及随机行为,从而完成全局最优值的寻找。算法所包含的基本过程如下:   觅食行为:鱼类会利用视觉或嗅觉来感知水中食物浓度的高低,以此来选择觅食的路线。   聚群行为:鱼类一般会以群体形式进行觅食,以此来躲避天敌的伤害,并以最大概率获得准确的觅食路线。   尾随行为:当群体中的某条鱼或几条鱼寻找到食物后,其附近的其他同伴会立刻尾随而来,其他更远处的鱼也会相继游过来。   随机行为:鱼在水中的活动是不受外界支配的,基本上处于随机状态,这种随机性有利于鱼类更大范围的寻找食物及同伴。   2.2 行为描述   首先假设1条人工鱼,其当前状态定义为Xr,随机选择另一个状态为Xs=[xsd](s=1,2,…,N;d=1,2,…,D,这是一个D维向量,其中状态为Xr的食物浓度为Yr=f(Xr),f(x)为目标函数,人工鱼群体中个体间的距离表示为drs=‖Xr-Xs‖,其有效视线范围(感知距离)为Visual,游行步长设置为Step,群体中的拥挤度因子为σ。   2.2.1 觅食行为   鱼类觅食是以定义的游行步长为前进单元,通过在其有效视线范围内感知食物浓度的变化来确定最佳觅食路线。设人工鱼当前状态为Xr,在有效视线范围内随机选择另一个状态为Xs,通过目标函数确定两种状态下的食物浓度分别为Yr、Ys,若YrYs,则向该方向前进一步,即Xr-next,反之,重复选择随机状态,并继续判断是否满足前进条件,直到随机状态选择的次数达到设定的try-number后,若仍然不满足前进条件,则随机向前移动一步。该过程用数学表达式描述为:   其中Rand为一个(0,1)的随机数。   2.2.2 聚群行为   人工鱼在其有效视线范围内能够感知同伴的数目及其中心位置,假设在当前视野范围内人工鱼感知到的同伴数目及其中心位置状态为Xc,若Yc,nfσYr,则表明该区域食物浓度较高,并且其周围并不拥挤,此时人工鱼将向此方向前进一步,否则继续执行觅食行为。其数学表达式为:   2.2.3 尾随行为   若人工鱼在当前视线范围内感知到的食物浓度最大值为Xmax,如果Ymax,nfσYr,则状态Xmax具有较高的食物浓度并且鱼群密度较低,适合人工鱼进行觅食,则朝着此方向前进一

文档评论(0)

yingzhiguo + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5243141323000000

1亿VIP精品文档

相关文档