时间序列分析第五章上机指导..docxVIP

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
时间序列分析第五章上机指导.

上机指导第五章5.8.1 拟合ARIMA模型由于ARMA模型是ARIMA模型的一种特例,所以在SAS系统中这两种模型的拟合都放在了ARIMA过程中。我们已经在第3章进行了ARMA模型拟合时介绍了ARIMA过程的基本命令格式。再次以临时数据集example5_1的数据为例介绍ARIMA模型拟合与ARMA模型拟合的不同之处。data example5_1;input x@@;difx=dif(x); t=_n_;cards;1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.385.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -16.22-19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44-23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29-9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80procgplot;plot x*t difx*t;symbol v=star c=black i=join;run;输出时序图显示这是一个典型的非平稳序列。如图5-49所示图5-49 序列x时序图考虑对该序列进行1阶差分运算,同时考察查分后序列的平稳性,在原程序基础上添加相关命令,程序修改如下:data example5_1;input x@@;difx=dif(x); t=_n_;cards;1.05 -0.84 -1.42 0.20 2.81 6.72 5.40 4.385.52 4.46 2.89 -0.43 -4.86 -8.54 -11.54 -16.22-19.41 -21.61 -22.51 -23.51 -24.49 -25.54 -24.06 -23.44-23.41 -24.17 -21.58 -19.00 -14.14 -12.69 -9.48 -10.29-9.88 -8.33 -4.67 -2.97 -2.91 -1.86 -1.91 -0.80procgplot;plot x*t difx*t;symbol v=star c=black i=join;procarima;identifyvar=x(1);estimate p=1;forecast lead=5 id=t ;run;语句说明:(1)DATA步中的命令“difx=dif(x);”,这是指令系统对变量x进行1阶差分,差分后的序列值赋值给变量difx。其中dif()是差分函数,假如要差分的变量名为x,常见的几种差分表示为:1阶差分:dif(x)2阶差分:dif(dif(x))k步差分:difk(x)(2)我们在GPLOT过程中添加绘制了一个时序图“difx*t”,这是为了直观考察1阶差分后序列的平稳性。所得时序图如图5-50所示。图5-50 序列difx时序图时序图显示差分后序列difx没有明显的非平稳特征。(3)“identify var=x(1);”,使用该命令可以识别查分后序列的平稳性、纯随机性和适当的拟合模型阶数。其中x(1)表示识别变量x的1阶差分后序列。SAS支持多种形式的差分序列识别:var=x(1),表示识别变量x的1阶查分后序列Δxt;var=x(1,1),表示识别变量x的2阶查分后序列Δ2xt;var=x(k),表示识别变量x的k步差分后序列Δkxt;var=x(k,s),表示识别变量x的k步差分后,再进行s步查分后序列ΔsΔkxt。识别部分的输出结果显示1阶查分后序列difx为平稳非白噪声序列,且具有显著的自相关系数不截尾、偏自相关系数1截尾的性质。(4)“estimate p=1;”对1阶差分后序列Δxt拟合AR(1)模型。输出拟合结果显示常数项不显著,添加或修改估计命令如下:estimate p=1 nonit;这是命令系统不要常数项拟合AR(1)模型,拟合结果显示模型显著且参数显著。如图5-51所示。图5-51序列difx模型拟合结果输出结果显示,序列xt的拟合模型为ARIMA(1,1,0)模型,模型口径为:Δxt=艾普龙t/1-0.66933B或等阶记为:xt=1.66933xt-1-0.66933xt-2+艾普龙t(5)“forecast lead=5 id=t;”,利用拟合模型对序列xt作5期预测。建立数据集,绘制时序图data example5_2; input x@@; l

文档评论(0)

jiulama + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档