- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Chap11曲线拟合和插值.
第11章 曲线拟合与插值 在大量的应用领域中,人们经常面临用一个解析函数描述数据(通常是测量值)的任务。对这个问题有两种方法。在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。这种方法在下一节讨论。这里讨论的方法是曲线拟合或回归。人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。图11.1说明了这两种方法。标有o的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。 11.1 曲线拟合 曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。数学上,称为多项式的最小二乘曲线拟合。如果这种描述使你混淆,再研究图11.1。虚线和标志的数据点之间的垂直距离是在该点的误差。对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。最小二乘这个术语仅仅是使误差平方和最小的省略说法。 图11.1 2阶曲线拟合 在MATLAB中,函数polyfit求解最小二乘曲线拟合问题。为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。 ? x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; ? y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2]; 为了用polyfit,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。如果我们选择n=1作为阶次,得到最简单的线性近似。通常称为线性回归。相反,如果我们选择n=2作为阶次,得到一个2阶多项式。现在,我们选择一个2阶多项式。 ? n=2; % polynomial order ? p=polyfit(x, y, n) p = -9.8108 20.1293 -0.0317 polyfit 的输出是一个多项式系数的行向量。其解是y = -9.8108x2 +20.1293x-0.0317。为了将曲线拟合解与数据点比较,让我们把二者都绘成图。 ? xi=linspace(0, 1, 100); % x-axis data for plotting ? z=polyval(p, xi); 为了计算在xi数据点的多项式值,调用MATLAB的函数polyval。 ? plot(x, y, o , x, y, xi, z, : ) 画出了原始数据x和y,用o标出该数据点,在数据点之间,再用直线重画原始数据,并用点 : 线,画出多项式数据xi和z。 ? xlabel( x ), ylabel( y=f(x) ), title( Second Order Curve Fitting ) 将图作标志。这些步骤的结果表示于前面的图11.1中。 多项式阶次的选择是有点任意的。两点决定一直线或一阶多项式。三点决定一个平方或2阶多项式。按此进行,n+1数据点唯一地确定n阶多项式。于是,在上面的情况下,有11个数据点,我们可选一个高达10阶的多项式。然而,高阶多项式给出很差的数值特性,人们不应选择比所需的阶次高的多项式。此外,随着多项式阶次的提高,近似变得不够光滑,因为较高阶次多项式在变零前,可多次求导。例如,选一个10阶多项式 ? pp=polyfit(x, y, 10) ; ? format short e % change display format ? pp. % display polynomial coefficients as a column ans = -4.6436e+005 2.2965e+006 -4.8773e+006 5.8233e+006 -4.2948e+006 2.0211e+006 -6.0322e+005 1.0896e+005 -1.0626e+004 4.3599e+002 -4.4700e-001 要注意在现在情况下,多项式系数的规模与前面的2阶拟合的比较。还要注意在最小(-4.4700e-001)和最大(5.8233e
您可能关注的文档
最近下载
- 2025年必威体育精装版劳动合同法全文.docx VIP
- 养老服务机构服务质量星级评定检查细则一.doc VIP
- 中国心血管健康与疾病报告.pdf VIP
- 《中国天然气发展报告(2016)》.docx VIP
- (高清版)B-T 24353-2022 风险管理 指南.pdf VIP
- GB∕T 24353-2022 《风险管理 指南》解读和应用指导材料(雷泽佳编写2024B0).pdf VIP
- 2025年版检验检测机构资质认定评审准则考试试题及答案.pdf VIP
- 前交通动脉瘤破裂伴蛛网膜下腔出血个案护理.pptx VIP
- 临床颅内动脉瘤破裂伴蛛网膜下腔出血的个案护理.pptx VIP
- 检验检测机构资质认定评审准则试题及答案.pdf VIP
文档评论(0)