WienerFilteringforImageRestorationBasicsonImage.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
WienerFilteringforImageRestorationamp;BasicsonImage.ppt

SPIE ITcom 8/01 M. Wu: ENEE631 Digital Image Processing (Spring09) Wiener Filtering for Image Restoration Basics on Image Compression Spring ’09 Instructor: Min Wu Electrical and Computer Engineering Department, University of Maryland, College Park Overview Last Time: image restoration Power spectral density for 2-D stationary random field A few commonly seen linear distortions in imaging system Deconvolution: inverse filtering, pseudo-inverse filtering Today: Wiener filtering: balance between inverse filtering noise removal Basics compression techniques Handling Noise in Deconvolution Inverse filtering is sensitive to noise Does not explicitly model and handle noise Balance between undo degradation H vs. noise suppression Minimize MSE between the original and restored e = E{ [ u(n1, n2) – u’(n1, n2) ] 2 }, where u’(n1, n2) is a func. of {v(m1, m2) } Best estimate is conditional mean E[ u(n1 , n2) | all v(m1 , m2) ] see EE621; but usually difficult to solve for general restoration (need conditional probability distribution, and estimation is nonlinear in general) Get the best linear estimate instead ? Wiener filtering Consider the (desired) image and noise as random fields Produce a linear estimate from the observed image to minimize MSE EE621 Review: MMSE Baysian parameter estimation – Minimum Mean Squared Error (MMSE) Estimation EE630 Review: Wiener Filtering Want to know the actual values (of the current/interested realization) of a random process {d[n]}, but cannot directly observe it. What we can observe is a process {x[n]} that is statistically related to d[n]. We want to estimate d[n] from x[n]. EE630 Review: Principle of Orthogonality “Orthogonal” in a statistical sense: i.e. the optimal error signal and each observation sample used in the filtering (and also their combinations) are statistically uncorrelated plugging e[n] into the orthogonality principle leads to the normal equation. Wiener Filtering Get the best lin

文档评论(0)

ailuojue2 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档