- 1、本文档共5页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
浅析基于Copula-VaR方法的期货合约组合保证金设定的实证研究
来源:考试吧(E) 2011-3-27 【考试吧:中国教育培训第一门户】 模拟考场
外盘期货开户及配资4000505707www.xolo.cc
温州旭隆企业管理有限公司 专业.专心 六年的诚信积累.值得信赖
FXCM福汇全新改良版MT4
交易执行更迅速,1K微型交易单位, 立即登记福汇免费MT4模拟账户!
百度推广
关闭
关闭
【摘要】保证金水平的高低主要取决于合约的风险,而期货合约组合的风险又主要取决于单个合约的风险以及合约之间的风险相关性。本文以黄大豆一号和黄大豆二号期货合约组合为研究对象,运用Copula-VaR方法对其风险进行了测量,实证分析结果表明Copula-VaR方法可以有效地计量期货组合的实际风险,并可用于对组合未来风险的预测。
【关键词】保证金;Copula理论;VaR模型;GARCH模型
一、引言
我国目前采用的方法为静态保证金设置模式,这种设置模式有两个特点:一是保证金设定标准固定;二是在特殊情况下会有所调整,如持仓量变化、临近交割期、法定节假日等。这种保证金设置模式的最大优点是操作方便,但缺点也很明显,不能根据市场行情的变化及时调整保证金的比率,容易造成资金的浪费或者无法覆盖全部的风险,这种保证金设置方式往往不能很好地与市场风险相匹配。这种不匹配主要表现在以下两个方面:一是针对单份期货合约,期货交易所往往不能根据合约风险的变化及时调整保证金,这往往造成收取的保证金比例偏高,影响期货市场的流动性;二是针对期货交易者持有的期货合约组合,期货交易所在收取合约组合的保证金时,往往是将各个合约保证金进行简单地累加,并没有考虑期货合约之间可能存在的风险对冲。
本文将用Copula-VaR方法测量期货组合的风险值,为期货交易所制定动态的保证金提供依据。通过制定动态的保证金体系,在风险可控制的前提下,可以提高保证金的使用效率,增强期货市场的流动性,对促进我国期货市场的发展具有重要意义。
二、Copula-VaR模型
以包含两种资产的组合为例,假设分别表示两资产的收益率序列,Copula-VaR模型计算原理
(一)各资产边缘分布形式的确定
利用Copula函数计算资产间的相关结构时,需要首先确定各资产的边缘分布形式。Copula函数对各资产的边缘分布形式不加限制,且各资产之间的分布形式也可以不同。金融时间序列往往并不服从正态分布的假设,而是呈现出尖峰、厚尾等特征,在对这类序列进行刻画时,可以运用GARCH模型对其进行拟合。
(二)Copula模型参数的估计
Copula函数的自变量均服从[0,1]上的均匀分布,因此,在计算出各变量的边缘分布后,需将各序列进行概率积分变换,转换成[0,1]分布序列,转换后的序列便是Copula函数所要拟合的数据。研究变量间的相关结构,可以简化为研究变量残差序列间的相关性,因此,在计算过程中,可以将各变量边缘分布的残差序列进行概率积分变换,变换后得到的序列即为Copula函数所要拟合的序列。得到观察序列后,便可以通过极大似然估计法等方法估计模型的参数。
(三)最优Copula函数的选择
Copula模型有很多分类,每一种Copula函数对数据的刻画都不相同,因此,在计算中,需选择一种最能有效刻画数据的Copula模型。通过上文的分析可知,Copula函数对其任一变量的偏微分都服从[0,1]上的均匀分布,因此,对Copula函数的拟合优度检验就可以转化为检验Copula函数的偏微分是否服从[0,1]上的均匀分布。检验序列是否服从[0,1]分布常用的方法是K-S检验法,通过该方法,可以选出一种拟合效果最优的模型。
(四)VaR的计算
通过上面的计算,假设得到各变量的边缘分布分别为、,所得出的Copula函数为,则投资组合的VaR可表示为:
其中,为资产在组合中占的比例,为对应一定置信水平的限定值,通过该公式,便可求出相应的VaR值。
三、数据描述
(一)数据选取与处理
本文研究选取大连商品交易所黄大豆一号和二号期货合约,样本区间选取为2005年1月4日至2009年12月30日,共五年,剔除节假日及两期货品种的不匹配数据,共获实际有效数据1026个,数据来源于文华财经期货行情系统。
对大豆期货品种,交易最活跃的合约通常是距离当前月(不包括当前月)的第3个期货合约,所以本文通过这种方式形成连续数据序列。在计算期货品种每日收益率时,本文采用几何收益率,即:
表1中的数据表明,这两个期货品种的收益序列具有尖峰后尾特征,不服从正态分布。Q统计结果表明收益率序列存在一定程度的自相关性,ARCH-LM检验表明其
文档评论(0)