- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
* * * * * 压缩感知理论简介 The Introduction of Compressed Sensing (CS) Theory 西安工程大学理学院 李海洋 1 背景介绍 1.1:传统采样理论简介 1.2:压缩感知理论的提出 2 压缩感知理论主要研究内容 2.1:信号的稀疏表示 2.2:观测矩阵的设计 2.3:信号重构 3 压缩感知应用-单像素CS相机 1.1 传统采样理论简介 信号 采样 压缩 传输 重构 Nyquist-Shannon 采样定律 JEPG等 传统的信号处理过程 传统的基于Nyquist-Shannon 采样定理指导下的信息采样理论的不足主要表现在以下两个方面: 1、根据 Nyquist-Shannon 采样定律,采样速率需达到信号带宽的两倍以上才能精确重构信号。而现实生活中,随着信息技术的高速发展,信息量的需求增加,携带信息的信号所占带宽也越来越大,因此对采样的硬件设备的要求也越来越高。 2、另一方面,在实际应用中,为了降低信号的存储、处理和传输成本,人们又不得不经由压缩方式减少信号表示的比特数,以此抛弃认为不重要的数据,这种高速采样再抛弃的过程显然是对采样资源的巨大浪费。 1.2 压缩感知理论的提出 既然传统方法采样的多数数据会被抛弃,那么,为什么还要获取全部数据而不直接获取需要保留的数据呢? 采集很少一部分数据并且期望从这些少量数据中解压出大量信息,有无这种可能呢?D. Donoho, Candes,T. Tao 等人证明了如果信号具有稀疏性的特性,那么就可能存在一种算法能够从这些少量的数据中还原出原先的信息。 信号 压缩 感知 传输 重构 信号 采样 压缩 2 压缩感知理论主要研究内容 2.1:信号的稀疏表示 2.2:观测矩阵的设计 2.3:信号重构 2.1 信号的稀疏表示 稀疏性的定义: 一个实值有限长的N维离散信号 ,它可以用一个标准正交基 的线性组合来表示,其中 表示矩阵 的转置,那么有 其中 ,若 在基 上仅有 个非零系数 时,称 为信号 的稀疏基, 是 稀疏(K-Sparsity)的。 如图是一个稀疏度为3的稀疏变换, , 向量 基本都是非零值, 但将其变换到 域 时,非零值就只有3 个了,数目远小于 原来的非零数目,实 现了信号的稀疏表 示。 如何寻找信号的最佳稀疏域呢? 这是压缩感知理论的基础和前提,也是信号精确重构的保证。对稀疏表示研究主要有两个方面: (1)基函数字典下的稀疏表示: 寻找一个正交基使得信号表示的稀疏系数尽可能的少。比较常用的基有:高斯矩阵、小波基、正(余)弦基、Curvelet基等。Candes和Tao经研究发现光滑信号的Fourier 系数、小波系数、有界变差函数的全变差范数、振荡信号的Gabor 系数及具有不连续边缘的图像信号的Curvelet 系数等都具有足够的稀疏性,可以通过压缩感知理论恢复信号。 (2)超完备库下的稀疏表示: 用超完备的冗余函数库来取代基函数,称之为冗余字典,字典中的元素被称之为原子,目的是从冗余字典中找到具有最佳线性组合的K项原子来逼近表示一个信号,称作信号的稀疏逼近或高度非线性逼近。 一是如何构造这样一个适合某一类信号的冗余字典; 二是在已知冗余字典的前提下如何设计快速有效的分解方法来稀疏地表示某一个信号。 2.2 观测矩阵的设计 观测器的目的是采样得到 个观测值,并保证从中能够重构出原来长度为 的信号 或者稀疏基下的系数向量 。 观测过程就是利用 观测矩阵的 个行向量对稀疏系数向量进行投影,得到 个观测值,即 如果我们假设信号已经是稀疏的,那么上面的方程就可以写作 观测矩阵要满足什么样的条件呢? 从上式中求出
文档评论(0)