- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
UsingBOINCDesktopGridforHighPerformanceMemoryDetection.jsp.pdf
Memory DetectionHuiping Yao, Lei Zhao*, Ying Li, Jiwen YangSchool of Computer Science and TechnologySoochow UniversitySuzhou 215006, China{20074227065072, zhaol, ingli, jwyang}@Abstract—Memory detection computation, data intensiveapplications, demands large computing resources. Mainframesare usually used to accelerate its computation. However, thissolution seems to be costly. In this paper, we present analternative approach of using desktop grid, using PC computers’idle CPU time, to realize parallel processing of memory detection.In order to demonstrate the effectiveness of this approach, aserial of simulation experiments were done. The results show thatit is a feasible approach for memory detection computation.Index Terms—BOINC, desktop grid, memory detection, highperformance computingI.INTRODUCTIONIn organizations(business, university, etc.), the percentageof computation time, when PC computers are busy, is less than5%.The rest are idle[1]. Desktop grid[2] appears to use theseidle resources to meet large-scale computation. BOINC[3], oneof the desktop grid platforms, is designed to supportapplications that have large computation requirements, storagerequirement, or both. The main requirement of BOINC is thatthe application be divisible into a number of jobs that can bedone independently.Memory detection, indispensable in semiconductor test,analyzes the data files from testers and gives the correspondingresults. Memory detection computation belongs to the large- scale computing. Mainframes are usually used to executememory detection. However, the mainframes are quiteexpensive.The new approach, presented in this paper, using BOINC inmemory detection computation is feasible for reasons below:
您可能关注的文档
- 寂寞高手——中国股市内在规律研究和实战操作
- 秘密规则--股市职业炒盘手自述_(完全篇)
- 投资王道 证券分析实践 txtUMD TXT BRM 格式手机书下
- 一个美国资本家的成长:世界首富沃伦·巴菲特传
- Visual C++ 程序员指南(一).pdf
- 1-semantic deep web-automatic attribute extraction from the
- 2-Automatic Generation of Ontology from the Deep Web.pdf
- A Framework of Deep Web Crawler.pdf
- A Holistic Approach on Deep Web Schema Matching .pdf
- A Machine Learning Approach Classification of Deep Web Sourc
最近下载
- 切向流过滤原理.ppt VIP
- 孤独症康复教育人员上岗培训课程考试题库【附答案】.docx VIP
- 教科版(2024)新教材小学二年级科学上册第二单元《3.我们周围的空气》精品课件.pptx
- 孤独症康复教育人员上岗培训课程考试题库【附答案】.docx VIP
- 极值点偏移1-2---极值点偏移定理.doc VIP
- XFUSION超聚变 服务器 (V5及以下) iBMC Redfish 接口说明.pdf VIP
- 景德镇社区工作者考试真题库(2024版).docx VIP
- 海外工程重油发电机组安装施工组织设计(中英文版).doc VIP
- 2025年中考历史复习专项训练:中国古代史选择题100题(原卷版).pdf VIP
- 蓝凌数字化办公OA平台解决方案EKP使用指南.docx VIP
文档评论(0)