FAFU机器学习08-1 Support Vector Machine课件.pptxVIP

FAFU机器学习08-1 Support Vector Machine课件.pptx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Foundations of Machine Learning Support Vector Machine (支持向量机) Top 10 algorithms in data miningC4.5K-MeansSVMAprioriEM (Maximum Likelihood)PageRankAdaBoostKNNNa?veBayesCART Support Vector Machine背景间隔与支持向量对偶问题核函数软间隔与正则化支持向量回归SVM in sklearn2023/11/4Support Vector MachineLesson 7 - 3 BackgroundThe original SVM algorithm was invented by?Vladimir N. Vapnik?and?Alexey Ya. Chervonenkis?in 1963Maximal Margin ClassifierIn 1992,?Bernhard E. Boser,?Isabelle M. Guyon and Vladimir N. Vapnik suggested a way to create nonlinear classifiers by applying the?kernel trick?to maximum-margin hyperplanes.The kernelized version using the Kernel TrickThe current standard incarnation (soft margin) was proposed by?Corinna Cortes?and Vapnik in 1993 and published in 1995.Soft Margin ClassifierThe soft-margin kernelized version (which combine 1, 2 and 3)2023/11/4Support Vector MachineLesson 7 - 4 BackgroundIn 1996, Vapnik et al. proposed a version of SVM to perform regression instead of classification.?Support Vector Regression (SVR)In?machine learning,?support vector machines?(SVMs, also?support vector networks) are?supervised learning ?models with associated learning?algorithms?that analyze data used for?classification?and?regression analysis. However,??it is mostly used?in?classification problems.SVM becomes popular because of its success in handwritten digit recognition 2023/11/4Support Vector MachineLesson 7 - 5 ProsKernel-based framework is very powerful, flexibleWork very well in practice, even with very small training sample sizesSolution can be formulated as a quadratic programmingMany publicly available SVM packages: e.g. LIBSVM, LIBLINEAR, SVMLight ConsCan be tricky to select best kernel function for a problemComputation, memory At training time, must compute kernel values for all example pairs Learning can take a very long time for large-scale problems2023/11/4Support Vector MachineLesson 7 - 6 Support Vector Machine背景间隔与支持向量对偶问题核函数软间隔与正则化支持向量回归SVM in sklearn2023/11/4Support Ve

文档评论(0)

暗伤 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档