金属多孔材料的研究现状与发展前景.docVIP

金属多孔材料的研究现状与发展前景.doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
PAGE 1 金属多孔材料的研究现状与发展前景 摘要:介绍了金属多孔材料的制备方法、应用、发展方向以及前景。 关键字:金属多孔材料;制备方法;应用 1 引言 金属多孔材料是一类具有明显孔隙特征的金属材料(孔隙率可达98%),由于孔隙的存在而呈现出一系列有别于金属致密材料的特殊功能,广泛应用于冶金机械、石油化工、能源环保、国防军工、核技术和生物制药等工业过程中的过滤分离、流体渗透与分布控制、流态化、高效燃烧、强化传质传热、阻燃防爆等,是上述工业实现技术突破的关键材料。 近年来金属多孔材料的开发和应用日益受到人们的关注。金属多孔(泡沫金属)材料是20世纪80年代后期国际上迅速发展起来的,是由刚性骨架和内部的孔洞组成,具有优异的物理特性和良好的机械性能的新型工程材料。它具备的优异物理性能,如密度小、刚度大、比表面积大、吸能减振性能好、消音降噪效果好、电磁屏蔽性能高,使其应用领域已扩展到航空、电子、医用材料及生物化学领域等。通孔的金属多孔材料还具有换热散热能力强、渗透性好、热导率高等优点;而闭孔金属多孔材料的物理特性则与通孔的相反。为了得到不同性能的多孔金属,各种制备方法被相继提出,如直接发泡法,精密铸造法,气泡法,烧结法和电沉积法等[1,2]。 2 金属多孔材料制备方法 2.1 从液态(熔融)金属开始制备 2.1.1熔体发泡法 在一定的条件下金属熔体中可生成气泡,并且一般情况下多数气泡由于浮力作用会迅速上升到液体表面而溢出。为了使更多气泡留在熔体中,可在其中加入增粘剂来阻碍气泡的上浮。19世纪60至70年代,人们就已经尝试用这种方法制备铝、镁、锌及其合金的泡沫材料。过去的10年中,又涌现出了大量的新思路、新工艺,其中有两种熔体发泡工艺特别具有发展前景:其一是直接将气体通入金属熔体中,其二是将发泡剂加入熔体中,发泡剂分解释放大量气体[3]。 ①直接吹气法:首先在熔融的金属中加入增粘剂以防止气泡从熔体中逸出。随后,采用旋转浆或振动的喷嘴将发泡气体(空气、氮气、二氧化碳、氩气等)通入熔体中,旋转浆或喷嘴的作用是在熔体中产生足够多的优良气泡并使他们分布均匀。常用的增粘剂包括碳化硅、氧化铝以及氧化镁,加入量一般为10%~ 20%(质量分数)。增粘剂的加入量和颗粒尺寸有一个适当的范围,太高或太低均会影响金属多孔材料的制备。直接吹气法制备的金属多孔材料的孔隙率为80%~90%,密度为0.69g/cm3~0.54g/cm3,气孔的平均尺寸为3mm~5mm,气泡壁厚为50um~85um。通过调整注入气体的流量和其他参数可以得到不同孔隙率的金属多孔材料。国外已把这种工艺用于连续生产泡沫铝中,铝板的产量可达900 kg/h。 ②发泡剂发泡法:将发泡剂加入熔融金属中分解而产生气体,由于气体受热膨胀而使熔融金属发泡。发泡后,经冷却即获得金属多孔材料。熔体的粘度直接影响多孔金属的品质。这种方法的优点是可制得非常均匀的金属多孔材料,并且气孔平均尺寸和熔体粘度以及多孔金属密度和粘度之间存在关系,使孔径可控。常用发泡剂为金属氢化物,如生产多孔铝采用TiH2、ZrH2和CaH2等。常用的增粘剂为金属Ca和Mn02,还有原位金属的氧化物等。 2.1.2固体一气体共晶凝固法(Gasars) 这种方法是乌克兰科学家1993年在专利中提出来的,依据是H:能于金属液体形成共晶系统。在高压H2下(5×106Pa)能获得含氢的均匀金属液,如果降低 温度通过定向凝固将发生共晶转变,H:在凝固区域内含量增加,并且形成气泡。因为体系压力决定共晶组成,所以外部压力和氢含量必须协调好[4]。最终孔的形状主要取决于氢含量、金属液外部压力、凝固的方向和速率(一般速度为0.05mm/s~5mm/s)、金属液的化学成分。该方法制得的多孔材料具有平行于凝固方向拉长的圆柱状孔洞,气孔的尺寸一般不均匀,且对设备的要求比较高。 Gasar技术已用来生产许多金属多孔材料,如Ni、Cu、Al、Mo、Be、Co、Cr、W、青铜、铜和不锈钢等。 2.1.3粉体发泡法 该法是将金属粉末或合金粉末与发泡剂粉末按一定的配比混合均匀,再将其压制成密实的预制品,然后升温到基体金属的熔点附近,使发泡剂分解释放出 的气体迫使压实的预制品膨胀成为泡沫金属。常用的发泡剂有TiH2、ZrH2等,一般氢化物的含量不高于3%,如果制备泡沫铁,则用碳化物(如SrC03)做发泡剂。该法可以制备形状复杂的半成品尺寸的工件,若在其表面粘结或轧制成金属板则可以得到三明治式的复合材料。 2.1.4熔铸法 ①熔模熔铸法:该法是先将泡沫塑料发泡成型,再将其浸入到液态耐火材料中,使耐火材料填充泡沫塑料孔隙。在耐火材料硬化后,加热升温使泡沫塑料气化分解,形成一个具有原泡沫塑料形状的三维骨架,将液态

文档评论(0)

151****0181 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档