回归分析class课件.ppt

  1. 1、本文档共50页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
(二)多元二项式回归 命令:rstool(x,y,’model’, alpha) n?m矩阵 显著性水平 (缺省时为0.05) n维列向量 例3 设某商品的需求量与消费者的平均收入、商品价格的统计数 据如下,建立回归模型,预测平均收入为1000、价格为6时 的商品需求量. 法一 直接用多元二项式回归: x1=[1000 600 1200 500 300 400 1300 1100 1300 300]; x2=[5 7 6 6 8 7 5 4 3 9]; y=[100 75 80 70 50 65 90 100 110 60]; x=[x1 x2]; rstool(x,y,purequadratic) 在画面左下方的下拉式菜单中选”all”, 则beta、rmse和residuals都传送到Matlab工作区中. 在左边图形下方的方框中输入1000,右边图形下方的方框中输入6。 则画面左边的“Predicted Y”下方的数据变为88.47981,即预测出平均收入为1000、价格为6时的商品需求量为88.4791. 在Matlab工作区中输入命令: beta, rmse To MATLAB(liti31) 结果为: b = 110.5313 0.1464 -26.5709 -0.0001 1.8475 stats = 0.9702 40.6656 0.0005 法二 To MATLAB(liti32) 返回 将 化为多元线性回归: * * 一元线性回归 多元线性回归 回归分析 数学模型及定义 *模型参数估计 *检验、预测与控制 可线性化的一元非线 性回归(曲线回归) 数学模型及定义 *模型参数估计 *多元线性回归中的 检验与预测 逐步回归分析 一、数学模型 例1 测16名成年女子的身高与腿长所得数据如下: 以身高x为横坐标,以腿长y为纵坐标将这些数据点(xI,yi)在平面直角坐标系上标出. 散点图 解答 一元线性回归分析的主要任务是: 返回 二、模型参数估计 1、回归系数的最小二乘估计 其中 ? ? = = = = n i i n i i y n y x n x 1 1 1 , 1 , ? ? = = = = n i i i n i i y x n xy x n x 1 1 2 2 1 , 1 . 返回 三、检验、预测与控制 1、回归方程的显著性检验 (Ⅰ)F检验法 (Ⅱ)t检验法 (Ⅲ)r检验法 2、回归系数的置信区间 3、预测与控制 (1)预测 (2)控制 返回 四、可线性化的一元非线性回归 (曲线回归) 例2 出钢时所用的盛钢水的钢包,由于钢水对耐火材料的侵蚀, 容积不断增大.我们希望知道使用次数与增大的容积之间的关 系.对一钢包作试验,测得的数据列于下表: 解答 散 点 图 此即非线性回归或曲线回归 问题(需要配曲线) 配曲线的一般方法是: 通常选择的六类曲线如下: 返回 一、数学模型及定义 返回 二、模型参数估计 返回 三、多元线性回归中的检验与预测 (Ⅰ)F检验法 (Ⅱ)r检验法 (残差平方和) 2、预测 (1)点预测 (2)区间预测 返回 四、逐步回归分析 (4)“有进有出”的逐步回归分析。 (1)从所有可能的因子(变量)组合的回归方程中选择最优者; (2)从包含全部变量的回归方程中逐次剔除不显著因子; (3)从一个变量开始,把变量逐个引入方程; 选择“最优”的回归方程有以下几种方法: “最优”的回归方程就是包含所有对Y有影响的变量, 而不包含对Y影响不显著的变量回归方程。 以第四种方法,即逐步回归分析法在筛选变量方面较为理想. 这个过程反复进行,直至既无不显著的变量从回归方程中剔除,又无显著变量可引入回归方程时为止。 逐步回归分析法的思想: 从一个自变量开始,视自变量Y作用的显著程度,从大到地依次逐个引入回归方程。 当引入的自变量由于后面变量的引入而变得不显著时,要将其剔除掉。 引入一个自变量或从回归方程中剔除一个自变量,为逐步回归的一步。 对于每一步都要进行Y值检验,以确保每次引入新的显著性变量前回归方程中只包含对Y作用显著的变量。 返回 统计工具箱中的回归分析命令 1、多元线性回归 2、多项式回归 3、非线性回归 4、逐步回归 返回 多元线性回归 b=regress( Y, X ) 1、确定回归系数的点估计值

文档评论(0)

xiaohuer + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档