Expert Object Recognition in Video在视频专家标识别.pptVIP

Expert Object Recognition in Video在视频专家标识别.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Expert Object Recognition in Video在视频专家标识别

Expert Object Recognition in Video Matt McEuen The EOR Pathway Early vision (feature extraction) Categorization Exemplar matching Expert Object Recognition Early Vision: Edge Detection Gabor filters Three filter sizes Four orientations Even and odd Early Vision: Edge Detection Early Vision: Line Detection Non-accidental structural properties collinearity parallelism symmetry Hough transform Categorization Allows a unique subspace for each category K-Means Categorization Exemplar Matching Principal Component Analysis (PCA) Based on covariance Visual memory reconstruction PCA Calculate covariance matrix of the samples Get the eigenvectors of the covariance matrix Choose which eigenvectors to keep Transform the data with the resulting matrix Exemplar Matching VENUS Biologically inspired Habituation Low-level features Knowledge and Hierarchical Learning Architecture Benefits of EOR for video General-purpose Segmentation: Attention window Associative memory in VENUS Problems with EOR for video Why learning? Problems with EOR for video Hard training / testing distinction Lots of processing The parameter k Data Data VEOR architecture VEOR architecture VEOR architecture VEOR architecture VEOR architecture Foreground segmentation Object tracking Feature extraction Clustering: goals Automatically determine k Facilitate learning ... efficiently Clustering: solutions Reuse of cluster centroids Clustering: solutions Reuse of cluster centroids Cluster growing and splitting Clustering: solutions Reuse of cluster centroids Cluster growing and splitting Incremental clustering Clustering: Fuzzy K-means Clustering Exemplar matching PCA Dirty flags Output: best match distance Membership subsystem Associative memory Multi-class [0,1] hypothesis One exemplar match per image One membership hypothesis per tracked object Three kinds of exemplar matching Matching to a training image Matching to a different learned object Matching to the same learned object Exemplar match: training i

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档