Clustering in Genralized Linear Mixed Model using Dirichlet 在使用Dirichlet广义线性混合模型聚类.pptVIP

Clustering in Genralized Linear Mixed Model using Dirichlet 在使用Dirichlet广义线性混合模型聚类.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Clustering in Genralized Linear Mixed Model using Dirichlet 在使用Dirichlet广义线性混合模型聚类

Clustering in Generalized Linear Mixed Model Using Dirichlet Process Mixtures Ya Xue Xuejun Liao April 1, 2005 Introduction Concept drift is in the framework of generalized linear mixed model, but brings new question of exploiting the structuring of auxiliary data. Mixtures with a countably infinite number of components can be handled in a Bayesian framework by employing Dirichlet process priors. Outline Part I: generalized linear mixed model Generalized linear model (GLM) Generalized linear mixed model (GLMM) Advanced applications Bayesian feature selection in GLMM Part II: nonparametric method Chinese restaurant process Dirichlet process (DP) Dirichlet process mixture models Variational inference for Dirichlet process mixtures Part I Generalized Linear Mixed Model Generalized Linear Model (GLM) A linear model specifies the relationship between a dependent (or response) variable Y, and a set of predictor variables, Xs, so that GLM is a generalization of normal linear regression models to exponential family (normal, Poisson, Gamma, binomial, etc). Generalized Linear Model (GLM) GLM differs from linear model in two major respects: The distribution of Y can be non-normal, and does not have to be continuous. Y still can be predicted from a linear combination of Xs, but they are connected via a link function. Generalized Linear Model(GLM) DDE Example: binomial distribution Scientific interest: does DDE exposure increase the risk of cancer? Test on rats. Let i index rat. Dependent variables: Independent variable: dose of DDE exposure, denoted by xi. Generalized Linear Model(GLM) Likelihood function of yi: Choosing the canonical link , the likelihood function becomes GLMM – Basic Model Returning to the DDE example, 19 labs all over the world participated this bioassay. There are unmeasured factors that vary between the different labs. For example, rodent diet. GLMM is an extension of t

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档