Clustering in Concept Etraction在概念提取的聚类.pptVIP

Clustering in Concept Etraction在概念提取的聚类.ppt

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Clustering in Concept Etraction在概念提取的聚类

Technical Report of Web Mining Group Presented by: Mohsen Kamyar Ferdowsi University of Mashhad, WTLab Main Approach in Concept Extraction Problems Clustering Methods and LSI Ideas and Our Works Experimental Results Main approach in Concept Extraction (we will say it CE) is using LSI. LSI is a collection of one Matrix Algorithm and some Probabilistic Analyses on it for using on Term-Document Matrix. At first we should create Term-Document matrix (using measures like TFiDF for indicating the importance of a term in a particular document), then give it to SVD (Singular Value Decomposition) algorithm and finally choose the first K columns as concepts. Singular Value Decomposition is an algorithm for Matrix (we assume that matrix M is m×n) Decomposition to 3 matrices like U, S and V, such that S is an orthogonal matrix of singular values, U is eigenvectors of the Matrix MMT (Term correlation matrix) and V is eigenvectors of the Matrix MTM (Document Correlation Matrix). S is sorted descending. Therefore the first k elements of it or the first k columns of U or the first k rows of V are the most important values. Steps of SVD can be explained as below: 1- Select first column of matrix M1, we name it u1 2- Calculate the length of u1 and add it to first element. 3- Then set B1=|u1|2/2 4- Then set U1=I-B1-1 u1u1T 5- Then set M2=U1M1 6- Do it for first row and then repeat for other rows and columns In general for ith column or row, in step 2 we should first set all elements before ith element equal to zero, then calculate the length and add the result to ith element. Main Approach in Concept Extraction Problems Clustering Methods and LSI Ideas and Our Works Experimental Results We can list the main problems of LSI as below This method is based on the sum of square of distances (Σ(si-ti)2), so it is useful for data that has Gaussian (Normal) Distribution. But Term-Document Matrix has Poisson Distribution. This method is very slow (its computation complexity is n3m and nm) Pois

您可能关注的文档

文档评论(0)

erterye + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档