模式识别讲稿2010-lecture5.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Fisher’s Linear Discriminates The classification problem become unmanageable in a feature space 50 or 100 dimension. The purpose of Fisher’s linear discriminant is to reduce the dimensionality of the problem from d to 1 Feature Extraction Methods The KL Transformation or Expansion Feature Selection Methods Basic Compute of Class Separability Error Probability Let stand for the feature space Inter-class Distance Given observed feature vectors Search Algorithm for Feature Selection A Branch and Bound Algorithm for Optimal Search * will be singular if In order to obtain a good estimate, n should be several times of d, 5 times at least. “There is no data like more data”. In the parametric method for supervised classification All mathematical feature space reduction techniques can be classified into one of 2 major categories: feature selection in the original measurement space of features. “extraction” or “transformed space” Discriminatory information compression can be achieved by approximating the feature vectors, each representing a pattern ,by a number of terms of the Karhunen-Loeve(KL) expansion . This number is not limited to the number of classes of patterns c-1 but it can be chosen to minimizes certain objective function. Consider a large set of D-dim pattern vectors . It’s always possible to expand each into an arbitrary but complete system of ortho-normal deterministic vectors , j=1,…, ∞ where without incurring any information lose, as: xj is the expansion coefficient associated with the basis vector is an approximation of obtained by taking a finite No., d of terms in the expansion. i.e. We want to choose the basis vectors in such a way that the mean square error is minimized. Since is just and Let us denote by , then We want to minimize ,considered a function of , subject to the orthonormal constraints

文档评论(0)

好文精选 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档