第9章-HIS-中的决策支持系统.pptVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第9章-HIS-中的决策支持系统

第9章 HIS 中的决策支持系统 医院信息系统的决策支持 医学决策支持:医疗工作中的计算机辅助决策支持 管理决策支持:计算机辅助管理决策支持 决策支持基础 统计学 数据仓库 人工智能 第1节 医学决策支持的基本概念 1、基本概念 医学决策支持:临床医生经常为病人的诊断、治疗作出决定。这些临床决定亦即临床决策(clinical decision)。 决策(decision making)就是为达到同一目标在众多可以采取的方案中选择最佳方案。 决策分析的基本步骤有以下四步: 1.供临床选择的治疗方法有时很多,此时要筛除一些“劣”的决策,有利于下一步的分析。 2.确定各决策可能的后果,并设置各种后果发生的概率。 3.确定决策人的偏爱,并对效用赋值。 4.在以下三步基础上去选择决策人最满意的决策,即期望效用最大的决策。 2、医学决策基本过程 临床推理的类型: 逻辑推理 归纳推理 启发式推理 第2节 医学决策支持的基本技术 1、概率方法与决策分析 Byes理论 Byes理论的局限: 难估计先验概率与条件概率 条件之间线性无关 早期医学决策使用 2、决策树与决策分析 启发式推理形成树型决策树(p178) 权重系数 决策树(de-cision tree)是一种能够有效地表达复杂决策问题的数学模型。 决策树由一些决策点、机会点和决策枝、机会枝组成。一般用圆圈“○”表示机会点,发生的结果不在医师的控制之下;小方框“□”表示决策点,在决策点,医师必须在几种方案中选取一种;决策点相应的分枝称为决策枝;机会点相应的分枝称为机会枝。 最可能患胰腺癌者包括40岁以上,中腹部疼痛持续1~3周的人。假设这类人中胰腺癌的发生率为12%。如有一种不冒什么风险的早期诊断方法对胰腺癌的检出率为80%(敏感度),但对有类似症状的非胰腺癌患者的假阳性率为5%,用此法诊断确诊的胰腺癌患者手术死亡率为10%,治愈率为45%。 根据上述疾病概率,诊断概率和死亡、治愈概率,如对1000人进行诊断、治疗,其所获得的益处,是否比不进行诊断检查和手术更大?可以用一个决策树(图6-4)进行分析比较。 从以上决策树可见,不作该项检查的死亡者为12例,均为胰腺癌病人。用该项检查手术后死亡12.5人,其中有5例为非胰腺癌病人。而且新的检查使44例非胰腺癌患者的胰腺功能因手术而可能受到损害。因此这项检查对病人是弊大于利,不宜使用。 3 符号推理和专家系统 专家系统最成功的实例之一, 是1976年美国斯坦福大学肖特列夫(Shortliff)开发的医学专家系统MYCIN,这个系统后来被知识工程师视为“专家系统的设计规范”。 4、神经网络和连接系统 人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称A.N.N.)是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 人工神经网络首先要以一定的学习准则进行学习,然后才能工作。 现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。 这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。 第3节 几个典型的医学决策支持系统 1、Mycin系统 MYCIN主要用于协助医生诊断脑膜炎一类的细菌感染疾病。在MYCIN的知识库里,大约存放着450条判别规则和1000条关于细菌感染方面的医学知识。它一边与用户进行对话,一边进行推理诊断。它的推理规则称为“产生式规则”,类似于:“IF(打喷嚏)OR(鼻塞)OR(咳嗽),THEN(有感冒症状)”这种医生诊断疾病的经验总结,最后显示出它“考虑”的可能性最高的病因,并以给出用药的建议而结束。 2 Internist-1和QMR系统 1982年,美国匹兹堡大学的Miller等发表了著名的Internist-Ⅰ内科计算机辅助诊断系统,其知识库中包含了572种疾病,约4 500种症状 系统使用一组参数表示: 相关频率

文档评论(0)

baoyue + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档