人工智能课件AI2014S_Chap04LinearModelsforRegression幻灯片.pptxVIP

人工智能课件AI2014S_Chap04LinearModelsforRegression幻灯片.pptx

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Artificial Intelligence Linear Models for RegressionDonghui WangAI Institute@ZJU2014.03ContentsLinear basis function modelsBayesian linear regressionReferences:Bishop. “Pattern Recognition and Machine Learning”, Chapter 3. 2006.Linear basis function modelsLinear basis function modelsBias parameterBasis functionRegression:Linear regression:Linear basis function model:Linear combinations of fixed nonlinear functions of the input variablesTypical basis functionsPolynomial basis function:‘Gaussian’ basis function:sigmoid basis function:Fourier basis / wavelets basisMaximum likelihood and least squaresSSE: sum-of-squares error functionAssume:Thus:For data set X = {x1, . . . , xN} and target vector t = (t1, . . . , tN)T, the likelihood function:Maximum likelihood and least squaresSolving w by ML:N×M design matrixMoore-Penrose pseudo-inverseMaximum likelihood and least squaresAbout w0:Solving β by ML:Geometry of least squares Sequential learningGradient descentGradient descent is based on the observation that if the multivariable function J(w) is defined and differentiable in a neighborhood of a point w0, then J(w) decreases fastest if one goes from w0 in the direction of the negative gradient of J(.) at w0, -J(w0) .Sequential learningn = 1, 2, …, NLearning rate Error functionStochastic gradient descent (sequential gradient descent)least-mean-squares or the LMS algorithmSequential learningBatch gradient descent:Regularized least squaresSparse modellassoError function with regularization term:Weight decay:parameter shrinkage methodMultiple outputsM × K matrix of parametersOutput K-dimensional target vector y:Multiple outputsEstimate W by ML:Decision TheoryReferences:Bishop. “Pattern Recognition and Machine Learning”, Chapter 1.5. 2006.Decision TheoryHow to make optimal decisions in situations involving uncertainty?Discriminative models:Generative models:Training setD={(xi,Ci)}, i=1,…,Np(Ci | xi)Testing setX={xi}, i=1,…,MResponse Y={Ci}, i=1,…,MTraining setD={(xi,Ci)}, i=1,

文档评论(0)

开心农场 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档