- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
[农林牧渔]第06章 图像编码与压缩技术110530
第6章 图像编码与压缩技术 教学目的 了解图象编码的目的和常用方法; 理解图象编码的基本概念和理论; 掌握熵编码方法、预测编码、变换编码的基本方法; 理解图象编码的国际标准。 6.1 概述 一.数据压缩的目的 数据压缩就是要减少描述图像的数据量,从而达到这样几个目的: 节省图像存储器的容量 减少传输时占用的通信话路 缩短图像处理时间,提高实时处理的速度。 二.数据压缩的可能性 三.图像编码的方法 1.根据编码过程中是否存在信息损耗可将图像编码分为有损压缩和无损压缩。 无损压缩无信息损失,解压缩时能够从压缩数据精确地恢复原始图像; 有损压缩不能精确重建原始图像,存在一定程度的失真。 2.根据编码原理可以将图像编码分为熵编码、预测编码、变换编码和混合编码等。 (1)熵编码。熵编码是纯粹基于信号统计特性的编码技术,是一种无损编码。熵编码的基本原理是给出现概率较大的符号赋予一个短码字,而给出现概率较小的符号赋予一个长码字,从而使得最终的平均码长很小。常见的熵编码方法有行程编码、哈夫曼编码和算术编码。 (2)预测编码。预测编码是基于图像数据的空间或时间冗余特性,用相邻的已知像素(或像素块)来预测当前像素(或像素块)的取值,然后再对预测误差进行量化和编码。预测编码可分为帧内预测和帧间预测,常用的预测编码有差分脉码调制(DPCM)和运动补偿法。 (3)变换编码。变换编码通常是将空间域上的图像经过正交变换映射到另一变换域上,使变换后的系数之间的相关性降低。图像变换本身并不能压缩数据,但变换后图像的大部分能量只集中到少数几个变换系数上,采用适当的量化和熵编码就可以有效地压缩图像。 (4)混合编码。混合编码是指综合了熵编码、变换编码或预测编码的编码方法,如JPEG标准和MPEG标准,JBIG,H261。 3.根据对压缩编码后的图像进行重建的准确程度,可将常用的图像编码方法分为三类: (1)信息保持编码:也称无失真编码,它要求在编解码过程中保证图像信息不丢失,从而可以完整地重建图像。信息保持编码的压缩比较低,一般不超过3:1,主要应用在图像的数字存储方面,常用于医学图像编码中。 常见的有:哈夫曼编码,算术编码,行程编码,FANO编码等。 (2)保真度编码:主要利用人眼的视觉特性,在允许的失真(Lossy)条件下或一定的保真度准则下,最大限度地压缩图像。保真度编码可以实现较大的压缩比,主要用于数字电视技术、静止图像通信、娱乐等方面。对于这些图像,过高的空间分辨率和过多的灰度层次,不仅增加了数据量,而且人眼也接收不到。因此在编码过程中,可以丢掉一些人眼不敏感的信息,在保证一定的视觉效果条件下提高压缩比。 常见的有: 预测编码:DPCM,运动补偿 频率域方法:正交变换编码(如DCT),子带编码 模型方法:分形编码,模型基编码 基于重要性:滤波,子采样,比特分配,向量量化 (3)特征提取:在图像识别、分析和分类等技术中,往往并不需要全部图像信息,而只要对感兴趣的部分特征信息进行编码即可压缩数据。例如,对遥感图像进行农作物分类时,就只需对用于区别农作物与非农作物,以及农作物类别之间的特征进行编码,而可以忽略道路、河流、建筑物等其他背景信息。 四.图像编码新技术 1)分形编码 分形编码是在分形几何理论的基础上发展起来的一种编码方法。分形编码最大限度地利用了图像在空间域上的自相似性(即局部与整体之间存在某种相似性),通过消除图像的几何冗余来压缩数据。 M.Barnsley将迭代函数系统用于描述图像的自相似性,并将其用于图像编码,对某些特定图像获得了10 000: 1的压缩比。分形编码过程十分复杂,而解码过程却很简单,故通常用于对图像编码一次,而需译码多次的信息传播应用中。 因此从分形的角度,许多视觉上感觉非常复杂的图像其信息量并不大,可以用算法和程序集来表示,再借助计算机可以显示其结合状态,这就是可以用分形的方法进行图像压缩的原因。 分形最显著的特点是自相似性,即无论几何尺度怎样变化,景物的任何一小部分的形状都与较大部分的形状极其相似。这种尺度不变性在自然界中广泛存在。例如,晶状的雪花、厥类植物的叶子等,这些图形都是自相似的。可以说分形图之美就在于它的自相似性,而从图像压缩的角度,正是要恰当、最大限度地利用这种自相似性。 2)小波编码 1989年,S.G.Mallat首次将小波变换用于图像编码。经过小波变换后的图像,具有良好的空间方向选择性,而且是多分辨率的,能够保持原图像在各种分辨率下的精细结构,与人的视觉特性十分吻合。 3)模型编码 模型编码是近几年发展起来的一种很有前途的低比特率编码方法,其基本出发点是在编、解码两端分别建立起相同的模型,编码时利用先验模型抽取图像中的主要信息并用模型
文档评论(0)