载人航天中的应急救生系统.docxVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
载人航天中的应急救生系统

载人航天中的应急救生系统1992年1月,中国政府批准/?target=http%3A///view/2109874.htm载人航天工程正式上马并命名为“921工程”,而作为用于发射载人飞船的运载火箭,长征二号F运载火箭与其它常规运载火箭最大的不同是长征二号F运载火箭顶部有逃逸塔,当火箭发生故障,它可以使箭船分离,并拽著轨道舱和返回舱降落在安全地带,使航天员脱离危险。运载火箭的故障检测处理系统在火箭飞行过程中一直检测运载火箭的飞行状态,对运载火箭是否出现需要逃逸的故障进行判断,并在确认火箭故障后自动发出逃逸信号。故障检测处理系统还可以接收手动逃逸信号(由航天员或地面故障诊断系统发出)。逃逸系统一旦收到自动逃逸信号或手动逃逸信号,立即实施应急逃逸,将航天员带离危险区,并为航天员的返回着陆提供必要的条件。国外航天技术发展的历史证明,威胁航天员的故障大多发生在火箭发射段,因此,解决火箭发射故障逃逸救生技术,是一项世界性难题。在完成载人航天飞行的上升段一—轨道运行一—返回的任务过程中,恶性事故发生概率最大区段一是上升段。应急状态的分布和产生 的原因大致为:96%的故障是由运载器的结构发生的,2%的故障是地面操作人员的操作故障,2 %的故障是有效载荷与运载器的分离故障。这些故障可分为不危险的、危险的、事故型的及灾难性的。其中70%的故障都要终止飞行,另有30%的故障仍能按预定的轨道飞行。以拥有世界上发射经验最丰富的俄罗斯/前苏联“联盟”火箭为例,其应急救生系统由飞船、火箭的部分分系统和设备及应急救生专用设备两部分组成。这些都位于火箭的头部。应急救生系统必须满足一定的设计要求,这其中最重要的包括:必须保障宇航员安全逃离危险区;逃逸过程中产生的过载、振动和噪声等不能超过人的生理极限;故障诊断系统必须在允许逃逸的最短时间内诊断故障并发出逃逸指令;应急救生系统的设计不能影响火箭的工作并为飞船的改进留出余量。可分离头部是一种可适应相当宽速度范围的特殊飞行器。它由飞船的逃逸部分(返回舱、轨道舱)、火箭头部整流罩的逃逸部分(上部整流罩)和应急救生动力装置组成。位于应急分离面以上的上部整流罩是可分离头部的壳体,也是应急救生动力装置和飞船舱段间的传力结构。(图里少了飞船逃逸部分(返回舱和轨道舱),我找不到相关图)救生系统中有飞船和火箭正常飞行时工作的部分系统组件和只在发生事故时启用的专用系统。应急救生系统专用装置有:1)应急救生发动机装置;2)头部整流罩分离发动机;3)安装在头部整流罩上的机构和装置,其中包括:稳定栅格翼、飞船舱体与头部整流罩壳体间的支撑机构、逃逸对接的火工品、灭火装置。联盟号的应急救生系统启用过三次:第一次是在1966年联盟号飞船进行第二次无人飞行试验时因陀螺仪伪信号误启动的。“联盟”火箭在点火前几秒自动中止发射程序,发射勤务塔回位,此时应急救生系统动力装置固体发动机按陀螺仪传感器信号突然点火,飞船热控系统启动,几秒后飞船燃料箱爆炸,引起全箭爆炸。第二次是在1975年发射联盟18号飞船的过程中启动的,火箭因一二级分离故障在亚轨道中止飞行,返回舱安全着陆于西伯利亚距中苏边境320km处。第三次是在1983年发射联盟T10飞船时,因火箭起火由地面指令启动的。宇航员在发射前两小时进舱,勤务塔在发射前30min撤离,应急计生系统于发射前15min进入执勤状态,起飞前140s指令增压,但由于燃烧剂阀门故障引起火灾,决定启动应急逃生系统。由地面的两个指挥员(发射场指挥和总设计师)同时给无线电操作员下达口令,应急逃生系统从接到指令到进入安全区用时311.5s。返回舱离开危险区1s后火箭发生爆炸。可分离头部和返回舱工作正常,开伞高度1500m。从开伞带着陆时间为预定的1.5倍,原因是爆炸产生的热气流减慢了降落伞下降的速度,着陆点距离发射台3.7km。宇航员的承载能力在研制逃逸救生系统时要了解人的承载能力,保证过载在人的生理极限以内,世界航空和航天史上都不乏因为过载超出驾驶员生理极限导致悲剧发生的案例。一般宇航员胸背向的过载承受能力可以达到23-25g,头足向可以达到10g,这些承载能力都与宇航员的坐姿和固定方式有关,还要考虑冲击过载的影响。噪声人体的影响也是不可忽略的,应急救生系统的噪声主要是由逃逸主发动机和火工品造成的,当噪声频率在0-50Hz时,强度为145db会造成宇航员呼吸困难,并改变呼吸频率,但可以承受;当噪声频率在50-100Hz,强度为150db会造成视觉模糊,呼吸苦难和头疼,这已经到了允许承受的极限。网上没相关的图逃逸救生系统的试验研究经过模型研究及单个部件、机构、分系统和结构部段的地面试验这二个阶段后,要进入第三个阶段的综合飞行试验,模拟各种事故环境条件的试验,因为仅在飞行条件下才能提供可能发生的真实的事故条件。这里应指出,救生装置的飞

文档评论(0)

561190791 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档