上海市原静安区成人流感样病例就诊百分比预测的自回归求和滑动平均模型构建与应用.docVIP

上海市原静安区成人流感样病例就诊百分比预测的自回归求和滑动平均模型构建与应用.doc

此“医疗卫生”领域文档为创作者个人分享资料,不作为权威性指导和指引,仅供参考
  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
上海市原静安区成人流感样病例就诊百分比预测的自回归求和滑动平均模型构建与应用

上海市原静安区成人流感样病例就诊百分比预测的自回归求和滑动平均模型构建与应用   摘要: 目的 探讨构建并应用自回归求和移动平均(autoregressive integrated moving average, ARIMA)模型预测原静安区成人流感样病例(influenza-like illness, ILI)就诊百分比的可行性。   方法 基于2011―2014年上海市原静安区的逐月成人ILI就诊百分比,模型参数确定采用非条件最小二乘法,模型结构依据简洁与残差不相关原则确定,拟合优度以许瓦兹贝叶斯准则与赤池信息准则评估,构建成人ILI就诊百分比预测的最优ARIMA模型。以模型预测原静安区2015年1―10月成人ILI就诊百分比,计算实际值与预测值的相对误差;并预测原静安区2016年的成人ILI就诊百分比。   结果   模型ARIMA(0,2,1)(1,1,0)12(无常数项)对成人ILI就诊百分比时间序列拟合良好,移动平均参数(MA1=0.944)与季节自回归参数(SAR1=-0.542)有统计学意义(P0.05),模型表达式为(1+0.542B)(1-B)2 (1-B12)Zt=(1-0.944B)μt。2015年1―10月的成人ILI就诊百分比的?A测值符合实际值的变动趋势,相对误差最小仅为4.45%。   结论 ARIMA模型可以较好地拟合原静安区成人ILI就诊百分比的时间变动趋势,能对成人ILI就诊百分比进行预测,短期预测有较高的精度。   关键词: ARIMA模型; 成人流感样病例; 就诊百分比; 预测中图分类号: R 183.3 文献标志码: A   Abstract: Objective To explore the feasibility of constructing and applying the autoregressive integrated moving average(ARIMA)model for predicting the hospital-visiting percentage of adult influenza-like illness (ILI) in Jing-an District, Shanghai.   Methods An optimal ARIMA model for predicting the hospital-visiting percentage of adult ILI was established based on the monthly hospital-visiting percentage of adult ILI in Jing-an District of Shanghai from 2011 to 2014. The parameters of the model were determined through non-conditional least square method, the structure thereof was determined according to the concision principle and residual non-relevance principle, and the goodness of fit thereof was determined in accordance with Schwarz Bayesian Criterion(BSC) and Akaike Information Criterion (AIC). This model was applied to predict the monthly hospital-visiting percentage of adult ILI in Jing-an District from   January to October of 2015 and to calculate the relative error between the actual value and the predicted one; it was also used to predict the monthly hospital-visiting percentage of adult ILI in Jing-an District in 2016.   Results   The ARIMA model (0,2,1)(1,1,0)12 (without constants) could well fit the time series of the hospital-visiting percentage of adult I

文档评论(0)

bokegood + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档