- 1、本文档共49页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
基于图像数字处理技术的电力设备毕业设计
1 引言
1.1 课题的背景和意义
电力设备(power 随着电力生产可靠性要求的提高,电压等级的不断增高,机组容量增大,输电距离增长,行中的故障隐患的准确诊断和及时维护,显得越来越重要。[1]。
随着我国国民经济的快速增长,电力供应呈总体偏紧,部分地区电力短缺严重的现象,导致电力生产和电力传输中的一些部门满负荷或者超负荷运转,同时对运行中的电力设备带来了严重的考验。而且电力供应的不足直接制约了我国经济发展,制约生产力的发展,也在这种情况下,变电站的电力设备安全、可靠的运行显得尤为重要。
为了提高电力系统运行的稳定性。国家正积极提高电力系统的自动化水平,电力系统正在大力建设无人值守变电站。许多变电站在遥测、遥信、遥控、遥调的基础上增加了“遥视”功能,实现了电力系统各种重要参数、设备和场所的监测。将视频图像引入电力设备运行状态的远程监视中带来了巨大的技术进步,但现有的视频监控系统只有视频监控功能和录像功能,不能对监控目标进行智能化的主动识别分析。因此对电力设备所出现的故障不能及时地处理,因此造成一系列的问题。首先,大量的图像传输到调度端,需要操作员时刻观察分析图像,无形中增加了操作员的工作负担;再次,人眼易疲劳的弱点和人工判断的主观性,严重影响了电力设备运行状态监测,不利于电力系统自动化程度的进一步提高;最后,人眼难以分辨细微图像的灰度变化,难以客观判断电力设备表面缺陷的程度[2]。从以上的具体问题,可以得出电力设备的故障识别需要借助计算机模式识别,以便更及时、更准确地排除故障。
图像分析技术可从根本上解决目前电力设备在线监测中存在的一些实际问题:很多高压设备的运行状态难以转换成电信号,在信号转换和传输过程中容易受强电磁场的影响;重要设备的运行参数需要实时监测,采用人工巡视难以满足实时性要求,而且巡视员的责任心、工作态度和精神状况严重影响了检测的结果;另外,人眼难以分辨细微图像的灰度变化,难以客观判断电力设备表面缺陷的程度。本课题的成果及其进一步的研究工作,可促进变电站监测系统的智能化、自动化,提高变电站工作人员的效率,取得更高的经济效益,将具有较大的实用价值和应用前景。
1.2 课题的国内外发展现状
视觉识别和检测技术在国外发展很快,早在20世纪80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉测试系统确实很有前途。基于图像处理的检测系统已经在其他领域取得了一定成果,如文字识别、指纹识别、人物识别、产品检测、军事侦察等。视觉技术在电力系统识别和检测应用也在本世纪已陆续开展,在电力系统中,在近些年,基于图像处理技术在电力系统中的应用,已经进行了一些有益的探索,并且也取得了一些可喜的成就。
现代电网自动化技术发展迅速,国外很多地方已经实现了变电站的无人值守。普及无人值守也成为目前和未来电网发展的必然趋势[3],在当前电力系统对自动化、智能化程度要求不断提高的背景下,将计算机视觉的相关新技术运用到电力系统中来,结合电力系统变电站的应用场合,为电力系统变电站中视频监控特别是视觉信息相关的监测系统提供一条崭新的技术手段。
而国内总体上还处于一种零散的、初步的应用阶段。比较成功的例子如电力设备的红外图像温度检测,基于图像识别的锅炉炉膛燃烧状况监测系统等。
20世纪90年来中期以来,特别是我国城乡电网大规模改造以来,220KV以下相继进行无人值班改造。其具体做法是在增加一次系统可靠性和实行微机保护,实现“四遥” ,并增加“遥视”系统。“遥视”系统应用多媒体实时图像监视技术,可以使运行人员远程直接观看变电站现场设备及环境图像。
电力设备的检测包括可以对杆塔、导线及避雷器、绝缘子、线路金具、线路周围环境进行巡视。机器人配备的高分辨率CCD摄像机摄取目标图像,实时传输到地面基站,由基站操作人员根据图像中导线、绝缘子等设施的外观确定是否损坏[4]。人工复查需对图像逐帧观察,效率低但较可靠。高压输电线路巡线机器人一般能发现架空线大部分表面故障。
目前有些电厂和变电站安装了视频监控系统,可实现监视现场设备、控制远程摄像机运动、数字视频录像等功能。但这些视频监控系统只有视频监视功能没有视频图像识别功能。还要依靠值班人员直接去观察和分析采集到的图像[5],判断电力设备的运行状态,缺乏对变电站电力设备的自动识别与分析功能。而目前提出的检测系统模型实现的视频图像识别内容主要包括:1对户外断路器、隔离开关以及接地刀闸等设备的断开、闭合状态进行检测;2测量输电线垂弧。
变电站图像的分析和电力设备运行故障的判别方法的研究还不成熟,本文借鉴了图像处理与识别技术在其它领域内成功应用的经验,将图像处理和模式识别的算法运用到电力设备的识别,从而判断出电力设备的运行状态,达到监测的目的。
1.3 论文的主要工作
主要是通过采集并处理电力设备的图像来
文档评论(0)