- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
稀疏判别分析报告
稀疏判别分析
摘要:针对流形嵌入降维方法中在高维空间构建近邻图无益于后续工作,以及不容易给近邻大小和热核参数赋合适值的问题,提出一种稀疏判别分析算法(seda)。首先使用稀疏表示构建稀疏图保持数据的全局信息和几何结构,以克服流形嵌入方法的不足;其次,将稀疏保持作为正则化项使用fisher判别准则,能够得到最优的投影。在一组高维数据集上的实验结果表明,seda是非常有效的半监督降维方法。
关键词:判别分析;稀疏表示;近邻图;稀疏图
sparse discriminant analysis
chen xiao.dong1*, lin huan.xiang2
1.school of information and engineering, zhejiang radio and television university, hangzhou zhejiang 310030, china;
2.school of information and electronic engineering,zhejiang university of science and technology, hangzhou zhejiang 310023, china
abstract:
methods for manifold embedding exists in the following issues: on one hand, neighborhood graph is constructed in such the high-dimensionality of original space that it tends to work poorly; on the other hand, appropriate values for the neighborhood size and heat kernel parameter involved in graph construction is generally difficult to be assigned. to address these problems, a novel semi-supervised dimensionality reduction algorithm called sparse discriminant analysis (seda) is proposed. firstly, seda sets up a sparse graph to preserve the global information and geometric structure of the data based on sparse representation. secondly, it applies both sparse graph and fisher criterion to seek the optimal projection. experiments on a broad range of data sets show that seda is superior to many popular dimensionality reduction methods.
methods for manifold embedding have the following issues: on one hand, neighborhood graph is constructed in such high.dimensionality of original space that it tends to work poorly; on the other hand, appropriate values for the neighborhood size and heat kernel parameter involved in graph construction are generally difficult to be assigned. to address these problems, a new semi.supervised dimensionality reduction algorithm called sparse discriminant analysis (seda) was proposed. firstly, seda set up a sparse graph to preserve the global information and geometric structure of the data based on sparse r
您可能关注的文档
最近下载
- 当事人诉讼费退还账户确认书(实用范本).docx VIP
- 2025湖北襄阳宜城市部分事业单位招聘工作人员41人考试参考题库附答案解析.docx VIP
- 呼吸训练器产品技术要求标准2024年.docx VIP
- 2025淮南辅警考试真题.docx VIP
- GB50330-2002 建筑边坡工程技术规范.docx
- DL_T5161.16-2002电气装置安装工程质量检验及评定规程第16部分1kV及以下配线工程施工质量检验.pdf VIP
- 新解读《GB_T 8145-2021脂松香》必威体育精装版解读.pptx VIP
- TCSEB 0008-2019 爆破振动监测技术规范.docx VIP
- 人民军队光荣传统PPT课件(1).pptx VIP
- 建筑行业收到预收款的账务处理.pdf VIP
文档评论(0)