an accurate prostate cancer prognosticator using a seven-gene signature plus gleason score and taking cell type heterogeneity into account准确的前列腺癌预言者使用seven-gene签名+格里森评分和考虑细胞类型的异质性.pdfVIP

an accurate prostate cancer prognosticator using a seven-gene signature plus gleason score and taking cell type heterogeneity into account准确的前列腺癌预言者使用seven-gene签名+格里森评分和考虑细胞类型的异质性.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
anaccurateprostatecancerprognosticatorusingaseven-genesignatureplusgleasonscoreandtakingcelltypeheterogeneityintoaccount准确的前列腺癌预言者使用seven-gene签名格里森评分和考虑细胞类型的异质性

An Accurate Prostate Cancer Prognosticator Using a Seven-Gene Signature Plus Gleason Score and Taking Cell Type Heterogeneity into Account 1 2 1,3 1 1 1 Xin Chen , Shizhong Xu , Michael McClelland , Farah Rahmatpanah , Anne Sawyers , Zhenyu Jia *, Dan Mercola1* 1 Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America, 2 Department of Genetics and Geneticist Botany and Plant Sciences, University of California Riverside, Riverside, California, United States of America, 3 Vaccine Research Institute of San Diego, San Diego, California, United States of America Abstract One of the major challenges in the development of prostate cancer prognostic biomarkers is the cellular heterogeneity in tissue samples. We developed an objective Cluster-Correlation (CC) analysis to identify gene expression changes in various cell types that are associated with progression. In the Cluster step, samples were clustered (unsupervised) based on the expression values of each gene through a mixture model combined with a multiple linear regression model in which cell- type percent data were used for decomposition. In the Correlation step, a Chi-square test was used to select potential prognostic genes. With CC analysis, we identified 324 significantly expressed genes (68 tumor and 256 stroma cell expressed genes) which were strongly associated with the observed biochemical relapse status. Significance Analysis of Microarray (SAM) was then utilized to develop a seven-gene classifier. The Classifier has been validated using two independent Data Sets. The overall prediction accuracy and sensitivity is 71% and 76%, respectively. The incl

您可能关注的文档

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档