a bayesian model for exploiting application constraints to enable unsupervised training of a p300-based bci利用贝叶斯模型应用约束,使p300-based bci的无监督培训.pdfVIP

a bayesian model for exploiting application constraints to enable unsupervised training of a p300-based bci利用贝叶斯模型应用约束,使p300-based bci的无监督培训.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
a bayesian model for exploiting application constraints to enable unsupervised training of a p300-based bci利用贝叶斯模型应用约束,使p300-based bci的无监督培训

A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300-based BCI Pieter-Jan Kindermans*, David Verstraeten, Benjamin Schrauwen Electronics and Information Systems, Ghent University, Ghent, Belgium Abstract This work introduces a novel classifier for a P300-based speller, which, contrary to common methods, can be trained entirely unsupervisedly using an Expectation Maximization approach, eliminating the need for costly dataset collection or tedious calibration sessions. We use publicly available datasets for validation of our method and show that our unsupervised classifier performs competitively with supervised state-of-the-art spellers. Finally, we demonstrate the added value of our method in different experimental settings which reflect realistic usage situations of increasing difficulty and which would be difficult or impossible to tackle with existing supervised or adaptive methods. Citation: Kindermans P-J, Verstraeten D, Schrauwen B (2012) A Bayesian Model for Exploiting Application Constraints to Enable Unsupervised Training of a P300- based BCI. PLoS ONE 7(4): e33758. doi:10.1371/journal.pone.0033758 Editor: Pedro Antonio Valdes-Sosa, Cuban Neuroscience Center, Cuba Received October 19, 2011; Accepted February 16, 2012; Published April 4, 2012 Copyright: 2012 Kindermans et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was partially funded by the BOF-GOA Project Home-MATE funded by the Ghent University Special Research Fund. http://www.ugent.be. No additional external funding received for this study. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the

您可能关注的文档

文档评论(0)

118zhuanqian + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档