sr-sihks:一种非刚体全局形状特征 sr-sihksglobal shape descriptor for non-rigid 3d object.pdfVIP

sr-sihks:一种非刚体全局形状特征 sr-sihksglobal shape descriptor for non-rigid 3d object.pdf

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
sr-sihks:一种非刚体全局形状特征 sr-sihksglobal shape descriptor for non-rigid 3d object

12 2014 ,50(4 ) Computer Engineering and Applications 计算机工程与应用 SR-SIHKS :一种非刚体全局形状特征 1,2 ,3 1,2 1,2 万丽莉 ,苗振江 ,岑翼刚 WAN Lili1,2 ,3 , MIAO Zhenjiang1,2 , CEN Yigang1,2 1.北京交通大学 计算机与信息技术学院 信息科学研究所,北京 100044 2.北京交通大学 现代信息科学与网络技术北京市重点实验室,北京 100044 3.北京航空航天大学 虚拟现实技术与系统国家重点实验室,北京 100191 1.Institute of Information Science, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China 2.Beijing Key Laboratory of Advanced Information Science and Network Technology, Beijing Jiaotong University, Beijing 100044, China 3.State Key Laboratory of Virtual Reality Technology and Systems ,Beihang University, Beijing 100191, China WAN Lili, MIAO Zhenjiang, CEN Yigang. SR-SIHKS :global shape descriptor for non-rigid 3D object. Computer Engineering and Applications, 2014, 50 (4 ):12-17. Abstract :Non-rigid 3D objects have plenty of shape deformations because of posture variations, so non-rigid shape retrieval is more challenging than rigid shape retrieval. Shape descriptor is especially important to non-rigid shape retrieval. In order to improve the retrieval accuracy, a new global shape descriptor for non-rigid 3D object is proposed in this paper. The key idea of the approach is to represent the SIHKS (Scale Invariant Heat Kernel Signature)local shape descriptors by means of the sparse representation theory, so it is called SR-SIHKS. The computation of SIHKS is improved by adaptively deducing the time parameters from the non-rigid benchmark. K-SVD algorithm is adopted to train a dictionary, and the sparse repre- sentations of local shape descriptors are gained by Batch-OMP algorithm. The sparse representations of all local shape descriptors are integrated over the entire shape to form a global shape descriptor. Experimental results show SR-SIHKS has obviously better retrieval performance than SIHKS and HKS on some non-rigid shape retrieval benchmarks. Key words :3D model retr

您可能关注的文档

文档评论(0)

qianqiana + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5132241303000003

1亿VIP精品文档

相关文档