Fisher线性判别分析实验(模式识别及人工智能原理实验1).docVIP

Fisher线性判别分析实验(模式识别及人工智能原理实验1).doc

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
Fisher线性判别分析实验(模式识别及人工智能原理实验1)

实验1 Fisher线性判别分析实验 一、摘要 Fisher线性判别分析的基本思想:通过寻找一个投影方向(线性变换,线性组合),将高维问题降低到一维问题来解决,并且要求变换后的一维数据具有如下性质:同类样本尽可能聚集在一起,不同类的样本尽可能地远。 Fisher线性判别分析,就是通过给定的训练数据,确定投影方向W和阈值y0,即确定线性判别函数,然后根据这个线性判别函数,对测试数据进行测试,得到测试数据的类别。 二、算法的基本原理及流程图 1 基本原理 (1)W的确定 各类样本均值向量mi 样本类内离散度矩阵和总类内离散度矩阵 样本类间离散度矩阵 在投影后的一维空间中,各类样本均值。样本类内离散度和总类内离散度 。样本类间离散度。 Fisher准则函数满足两个性质: ·投影后,各类样本内部尽可能密集,即总类内离散度越小越好。 ·投影后,各类样本尽可能离得远,即样本类间离散度越大越好。 根据这个性质确定准则函数,根据使准则函数取得最大值,可求出W:。 (2)阈值的确定 实验中采取的方法:。 (3)Fisher线性判别的决策规则 对于某一个未知类别的样本向量x,如果y=WT·xy0,则x∈w1;否则x∈w2。 2 流程图 归一化处理载入训练数据得到每个类的均值向量计算类内的离散度,总的离散度计算总离散度的逆矩阵 归一化处理 载入训练数据 得到每个类的均值向量 计算类内的离散度,总的离散度 计算总离散度的逆矩阵 计算投影向量和阈值 载入测试数据 归一化处理 判断测试数据类别 方差标准化(归一化处理) 一个样本集中,某一个特征的均值与方差为: 归一化: 三、实验要求 寻找数据进行实验,并分析实验中遇到的问题和结论,写出实验报告。

文档评论(0)

jgx3536 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:6111134150000003

1亿VIP精品文档

相关文档