网站大量收购闲置独家精品文档,联系QQ:2885784924

EGARCH模型在期货公司保证金率设置中应用探究.doc

EGARCH模型在期货公司保证金率设置中应用探究.doc

  1. 1、本文档共5页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
EGARCH模型在期货公司保证金率设置中应用探究

EGARCH模型在期货公司保证金率设置中应用探究摘要:本文运用EGARCH模型对上海商品交易所的铜期货合约保证金水平进行了研究,实证结果证明该模型有助于解决目前期货公司在设置公司保证金率上存在的问题。 关键词:期货市场;公司保证金率;期货价格波动幅度;EGARCH模型 中图分类号:F224;F713.35 文献标识码:A 文章编号:1001-828X(2012)08-0-01 一、研究意义 保证金交易制度不仅有效地解决了期货买卖的信用风险,还因保证金所产生的杠杆作用大大提高了投资者资金运作的效率,在期货价格变动时保证金就是清偿投资者损益的本金。当市场价格向着有利于交易者的方向变动时,交易者能获得较高收益。反之,交易者的亏损也会成倍放大。所以期货价格波动幅度越大,投资风险越大,相对应的保证金率应该越高。期货公司在设定公司保证金率的时候面临两难的选择:过高的公司保证金水平可以降低客户的违约风险,但也提高了市场参与者的交易成本;过低的保证金水平又容易导致违约风险的产生。我国期货公司制定公司保证金率的方法是在交易所保证金率的基础上主观地、拍脑袋式的加几个点,并没有将此客观化。而且由于影响市场价格的因素众多,期货市场的整体风险是动态变动的,所以设定一个合适的客观的保证金水平有利于期货公司兼顾风险覆盖率和资金运用率两个方面。 二、国内外研究概况 目前国内外对保证金设定方法的研究有很多,比如:EWMA 模型与稳健型EWMA模型,该模型较好地考虑了波动的集聚性,同时该模型的风险覆盖相对较高。但模型中衰减因子的取值存在难度;针对金融收益分布的“尖峰厚尾”特征,国内外学者Bollerslev 提出了GARCH 模型;针对金融市场上存在的杠杆效应,Nelson 等人提出了非对称性GARCH 模型,包括TGARCH、EGARCH、APARCH 等等;极值理论的保证金水平设置方法着重考虑分布的尾部,能反映潜在灾难性事件导致金融机构重大损失的程度。但该方法存在参数、模型和数据的不确定性的缺点;适用于期货、期权之间和不同期货之间的组合投资风险确定的SPAN和TIMS系统在现阶段并不适用于我国的期货市场。 三、本文研究的方法 (一)多元线性回归模型 在实际经济问题中,一个变量往往受到多个变量的影响。当回归模型中的解释变量个数超过1时,称为多元回归模型,含有k个解释变量的线性回归模型可以写为: (t=1,2,…,T) (1) 其中 k为解释变量的数目,(k=1,2,…,k)称为偏回归系数。其中,为常数项,为固定时,每增加一个单位对的效应,即对的偏回归系数等等。 多元线性回归模型除了要满足古典线性回归模型的基本假定外,还要求解释变量之间不相关,即不存在多重共线性。 (二)EGARCH模型 由Nelson提出的EGARCH或者指数GARCH模型允许和具有比GARCH模型更加灵活的关系。EGARCH的基本形式为: (t=1,2,…,T) (2) (3) 式(2)中是解释变量向量,是系数向量。式(2)给出的均值方程和一个带有扰动项的外生变量的函数。式(3)是条件方差方程,等式左边是条件方差的对数,意味着杠杆影响是指数的,而不是二次的。只要,冲击的影响就存在着非对称性。 四、实证分析 正如前文中提到,作为用于在期货价格变动时清偿投资者损益的保证金与期货品种的价格波动幅度密切相关。某一期货品种的保证金率应与该品种的期货价格变动保持一致。能完美地兼顾控制信用风险和资金使用效率的最理想的公司保证金率应该是能准确地、分毫不差地覆盖期货价格变动幅度的保证金率。因此,本文通过建立模型模拟出某一品种期货价格的波动率,从而得出客观的、尽可能理想的公司保证金率。 1.数据的选取及描述性统计 目前大部分相关文章所选用的数据都是2005年以前的,当时商品期货价格波动不大,但在2006年之后各个品种的期货价格波动幅度都明显加大了,故本文选取了在商品期货中波动幅度最大的沪铜期货价格作为研究对象。本文数据选取了2005年1月4日,至2012年2月2日沪铜期货主力合约的结算价作为观测值。此外,还将一些已经有过前人验证,有效影响沪铜价格变化的主要因素考虑在内以增加模型的准确度,这些因素已被验证相互间并不相关,所以本文数据还选取了2005年1月4日,至2012年2月2日LME3月铜的收盘价、道琼斯指数和美元指数,共6880个样本观测数据。通过学习前人的研究成果,决定对所选取的数据进行预处理,即:、、、其中,为第t日沪铜期货主力合约的结算价;是第t日LME3月铜的收盘价;是第t日道琼斯指数的收盘价;是第t日美元指数的收盘价。然后分别取对数,即:等。本文采用时间序列分析软件Eviews6.0处理数据。 经过样本统计量分析

文档评论(0)

linsspace + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档