遗传算法小论文.doc.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
遗传算法小论文.doc

安徽大学 遗传算法期末小论文 题  目:  遗传算法的原理及其发展应用前景     学生姓名:  朱邵成   学号: 院(系): 电气工程与自动化学院 专业: 模式识别  教师姓名:  吴燕玲   教师所在单位:  安徽大学电气工程与自动化学院  完成时间:  2016    年   6    月 ? ? 生物的进化是一个奇妙的优化过程,它通过选择淘汰,突然变异,基因遗传等规律产生适应环境变化的优良物种。遗传算法是根据生物进化思想而启发得出的一种全局优化算法。 遗传算法的概念最早是由Bagley J.D在1967年提出的;而开始遗传算法的理论和方法的系统性研究的是1975年,这一开创性工作是由Michigan大学的J.H.Holland所实行。当时,其主要目的是说明自然和人工系统的自适应过程。遗传算法简称GA(Genetic Algorithm),在本质上是一种不依赖具体问题的直接有哪些信誉好的足球投注网站方法。遗传算法在模式识别、神经网络、图像处理、机器学习、工业优化控制、自适应控制、生物科学、社会科学等方面都得到应用。在人工智能研究中,现在人们认为“遗传算法、自适应系统、细胞自动机、混沌理论与人工智能一样,都是对今后十年的计算技术有重大影响的关键技术”。 一、遗传算法的基本概念 遗传算法的基本思想是基于Darwin进化论和Mendel的遗传学说的。Darwin进化论最重要的是适者生存原理。它认为每一物种在发展中越来越适应环境。物种每个个体的基本特征由后代所继承,但后代又会产生一些异于父代的新变化。在环境变化时,只有那些熊适应环境的个体特征方能保留下来。Mendel遗传学说最重要的是基因遗传原理。它认为遗传以密码方式存在细胞中,并以基因形式包含在染色体内。每个基因有特殊的位置并控制某种特殊性质;所以,每个基因产生的个体对环境具有某种适应性。基因突变和基因杂交可产生更适应于环境的后代。经过存优去劣的自然淘汰,适应性高的基因结构得以保存下来。 由于遗传算法是由进化论和遗传学机理而产生的直接有哪些信誉好的足球投注网站优化方法;故而在这个算法中要用到各种进化和遗传学的概念。这些概念如下: 一、串(String) 它是个体(Individual)的形式,在算法中为二进制串,并且对应于遗传学中的染色体(Chromosome)。 二、群体(Population) 个体的集合称为群体,串是群体的元素 三、群体大小(Population Size) 在群体中个体的数量称为群体的大小。 四、基因(Gene) 基因是串中的元素,基因用于表示个体的特征。例如有一个串S=1011,则其中的1,0,1,1这4个元素分别称为基因。它们的值称为等位基因(Alletes)。 五 、基因位置(Gene Position) 一个基因在串中的位置称为基因位置,有时也简称基因位。基因位置由串的左向右计算,例如在串S=1101中,0的基因位置是3。基因位置对应于遗传学中的地点(Locus)。 六、基因特征值(Gene Feature) 在用串表示整数时,基因的特征值与二进制数的权一致;例如在串S=1011中,基因位置3中的1,它的基因特征值为2;基因位置1中的1,它的基因特征值为8。 七、串结构空间SS 在串中,基因任意组合所构成的串的集合。基因操作是在结构空间中进行的。串结构空间对应于遗传学中的基因型(Genotype)的集合。 八、参数空间SP 这是串空间在物理系统中的映射,它对应于遗传学中的表现型(Phenotype)的集合。 九、非线性 它对应遗传学中的异位显性(Epistasis)。 十、适应度(Fitness) 表示某一个体对于环境的适应程度。 遗传算法还有一些其它的概念,这些概念在介绍遗传算法的原理和执行过程时,再进行说明。 二、遗传算法的步骤和意义 1.初始化 选择一个群体,即选择一个串或个体的集合bi,i=1,2,...n。这个初始的群体也就是问题假设解的集合。一般取n=30-160。 通常以随机方法产生串或个体的集合bi,i=1,2,...n。问题的最优解将通过这些初始假设解进化而求出。 2.选择 根据适者生存原则选择下一代的个体。在选择时,以适应度为选择原则。适应度准则体现了适者生存,不适应者淘汰的自然法则。 给出目标函数f,则f(bi)称为个体bi的适应度。以为选中bi为下一代个体的次数。 显然: (1)适应度较高的个体,繁殖下一代的数目较多。 (2)适应度较小的个体,繁殖下一代的数目较少;甚至被淘汰。 这样,就产生了对环境适应能力较强的后代。对于问题求解角度来

文档评论(0)

hhuiws1482 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

版权声明书
用户编号:5024214302000003

1亿VIP精品文档

相关文档