单目标图像的目标区域提取.docVIP

  1. 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
  2. 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  3. 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  4. 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  5. 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  6. 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  7. 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
单目标图像的目标区域提取

西安理工大学 研究生课程论文 课程名称: 数字图像分析 课程代号: 任课教师: 论文题目: 单目标图像的目标区域提取 完成日期: 2015 年 1 月 13 日 学 科: 姓 名: 单目标图像的目标区域提取 摘 要:图像分割的目的是将图像划分为不同的区域,区域增长是一种根据事先定义的准则将像素或子区域聚合成为更大的区域的过程,分裂合并是根据一致性准则处理目标和背景之间灰度渐变图像的典型算法。本文以单目标图像为对象,通过区域增长和分裂合并的方法实现了对目标区域的提取,并对实验结果进行了分析。 关键字:图像分割;区域增长;分裂合并;二值化 Abstract:The purpose of image segmentation is to divide the image into different areas, regional growth is a kind of according to predefined criteria will become more pixels or subdomain polymerization process of large area, split the merger is processed according to the consistency criterion between target and background gray gradient image of typical algorithm. Based on the single target image as the object, through regional growth and division merge method to extract the target area is achieved, and the experiment results are analyzed. Key words:Image segmentation;Regional growth;Split the merger;binarization 1引言 数字图像处理的目的之一是图像识别, 而图像分割与测量是图像识别工作的基础。图像分割是将图像分成一些有意义的区域, 然后对这些区域进行描述, 相当于提取出某些目标区域图像的特征, 判断图像中是否有感兴趣的目标。图像分割是图像处理到图像分析的关键步骤,在图像工程中占据重要的位置。一方面,它是目标表达的基础,对特征测量有重要的影响。另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。 2技术分析 2.1图像分割 图像分割就是将待处理的图像表示为物理上有意义的连通区域的集合,一般是通过对图像的不同特征如纹理、颜色、边缘、亮度等特征的分析,来达到图像分割的目的。图像分割通常是为了进一步对图像进行分析、理解、识别、处理、跟踪等,分割的准确性直接影响到后续任务的有效性,因此分割在图像处理中具有十分重要的意义。 图像分割可以依据图像中每个像素的颜色、灰度、纹理信息和几何性质等特征,将图像中具有某些特殊含义的不同区域区分开,分割后所形成的这些区域是互不重叠的,并且每个区域都满足特定区域的一致性。分割出来的区域应该同时满足: (1)分割出来的图像区域的均匀性和连通性。 (2)相邻分割区域之间针对选定的某种特征具有明显的差异。 (3)分割区域边界应该规整,同时保证边缘的空间定位精度。 根据图像分割的处理方式不同,可以将基于区域的图像分割算法分为以下三大类:a.阈值法;b.区域生长和分裂合并法;c.基于统计学的算法。常见的经典的图像分割技术有:并行边界分割技术、串行边界分割技术、并行区域分割技术和串行区域分割技术。串行区域分割技术指采用串行处理的策略通过对目标区域的直接检测来实现图像分割的技术, 它的特点是将整个处理过程分解为顺序的多个步骤逐次进行, 对后继步骤的处理要对前面已完成步骤的处理结果进行判断而确定。这里的判定要根据一定的准则, 一般来说如果准则是基于图像灰度特性的, 则这个方法可以用于灰度图像分割。基于区域的串行分割技术有两种基本的形式, 一是从单个象素出发, 渐渐合并以形成所需的分割区域, 二是从整个图出发, 分裂切割至所需要的分割区域, 第一种方法的典型技术就是区域增长。本文主要讨论的就是区域增长算法和分裂合并算法。 2.2区域增长算法 基于区域生长的算法的基本思想是把具有相似性质的像素归并在同一个区域内。像素的相似性判定包括图像的纹理信息、灰

文档评论(0)

haihang2017 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档