- 1、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。。
- 2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 3、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
- 4、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
- 5、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们。
- 6、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
- 7、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
第32 卷 第1 期 控 制 与 决 策 Vol. 32 No. 1 2017 年 1 月 Control and Decision Jan. 2017 文章编号: 1001-0920 (2017) 01-0001-11 DOI: 10.13195/j.kzyjc.2016.0462 时间序列数据挖掘的相似性度量综述 a,b a a 陈海燕 , 刘晨晖, 孙 博 (南京航空航天大学a. 计算机科学与技术学院,b. 软件新技术与产业化协同创新中心,南京210016) 摘 要: 在时间序列数据挖掘中, 时间序列相似性是一个重要的概念. 对于诸多算法而言, 能否与一种合适的相似性 度量方法结合应用, 对其挖掘性能有着关键影响. 然而, 至今仍没有统一的度量相似性的方法. 对此, 首先综述了常用 的相似性度量方法, 分析了各自的优点与不足; 其次, 讨论了近年来出现的时序相似性的新解释及其度量方法; 再次, 探讨了相似性度量在时序挖掘任务中的应用以及与挖掘精度的关系; 最后给出了关于时序相似性度量进一步的研究 方向. 关键词: 时间序列数据挖掘;时间序列相似性;相似性度量;挖掘精度 中图分类号: TP273 文献标志码: A Survey on similarity measurement of time series data mining a,b a a CHEN Hai-yan , LIU Chen-hui , SUN Bo (a. School of Computer Science and Technology,b. Collaborative Innovation Center of Novel Software Technology and Industrialization ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016 ,China) Abstract: Similarity measure is an important concept in time series data mining. For many data mining algorithms, whether it can be used in combination with a suitable time series similarity measure method has a key influence on mining performance. However, there is no uniform definition and measure of similarity. Therefore, we first introduce the most popular similarity measures, and analyze the advantages and disadvantages of each measure. Then, the new interpretations of the time series similarity and the corresponding measures are discussed. Furthermore, we analyze the applications of similarity measures in clustering, classification and regression of time series data, and the relationship between
有哪些信誉好的足球投注网站
文档评论(0)