实验四图像增强精要.docVIP

  1. 1、本文档共15页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
实验四图像增强精要

信息工程学院实验报告 成 绩: 指导老师(签名): 课程名称:数字图像处理 实验项目名称:实验四 图像增强 实验时间:2016.11.08 班级: 姓名: 学号: 一、实验目的 1.了解图像增强的目的及意义,加深对图像增强的感性认识,巩固所学理论知识。 2. 掌握图像空域增强算法的基本原理。 3. 掌握图像空域增强的实际应用及MATLAB实现。 4. 掌握频域滤波的概念及方法 5. 熟练掌握频域空间的各类滤波器 6.掌握怎样利用傅立叶变换进行频域滤波 7. 掌握图像频域增强增强的实际应用及MATLAB实现。 二、实验步骤及结果分析 1. 基于幂次变换的图像增强 程序代码: clear all; close all; I{1}=double(imread(fig534b.tif)); I{1}=I{1}/255; figure,subplot(2,4,1);imshow(I{1},[]);hold on I{2}=double(imread(room.tif)); I{2}=I{2}/255; subplot(2,4,5);imshow(I{2},[]);hold on for m=1:2 Index=0; for lemta=[0.5 5] Index=Index+1; F{m}{Index}=I{m}.^lemta; subplot(2,4,(m-1)*4+Index+1),imshow(F{m}{Index},[]) end end 执行结果: 图1 幂次变换增强结果 实验结果分析: 由实验结果可知,当r1时,黑色区域被扩展,变的清晰;当r1时,黑色区域被压缩,变的几乎不可见。 直方图规定化处理 程序代码: clear all clc close all %0.读图像 I=double(imread(lena.tiff)); subplot(2,4,1); imshow(I,[]); title(原图) N=32; Hist_image=hist(I(:),N); Hist_image=Hist_image/sum(Hist_image); Hist_image_cumulation=cumsum(Hist_image);%累计直方图 subplot(245); stem(0:N-1,Hist_image); title(原直方图); %1.设计目标直方图 Index=0:N-1; %正态分布直方图 Hist{1}=exp(-(Index-N/2).^2/N); Hist{1}=Hist{1}/sum(Hist{1}); Hist_cumulation{1}=cumsum(Hist{1}); subplot(242); stem([0:N-1],Hist{1}); title(规定化直方图1); %倒三角形状直方图 Hist{2}=abs(2*N-1-2*Index); Hist{2}=Hist{2}/sum(Hist{2}); Hist_cumulation{2}=cumsum(Hist{2}); subplot(246); stem(0:N-1,Hist{2}); title(规定化直方图2); %2. 规定化处理 Project{1}=zeros(N); Project{2}=zeros(N); Hist_result{1}=zeros(N); Hist_result{2}=zeros(N); for m=1:2 Image=I; %SML处理(SML,Single Mapping Law单映射规则 for k=1:N Temp=abs(Hist_image_cumulation(k)-Hist_cumulation{m}); [Temp1,Project{m}(k)]=min(Temp); end %2.2 变换后直方图 for k=1:N Temp=find(Project{m}==k); if isempty(Temp) Hist_result{m}(k)=0; else Hist_result{m}(k)=sum

您可能关注的文档

文档评论(0)

1520520 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档