Marketing Research的课件- Preliminary_Data_Analysis_s.ppt

Marketing Research的课件- Preliminary_Data_Analysis_s.ppt

  1. 1、本文档共37页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Marketing Research的课件- Preliminary_Data_Analysis_s

Preliminary Data Analysis and Data Preparation Session: January 22; 2010 Steps prior to data entry Data editing: First ‘look’ at data to identify potential problems/correct them, in the field by interviewer and field supervisor Errors, Inconsistencies, Ineligible Respondents, Systematic Missings - early remedy? Coding Coding closed-ended questions involves specifying how the responses are to be entered Open-ended questions are difficult to code Set up Code Book with category labels and values? Depends on type of MVA In this session, we focus on steps after data entry… Preliminary inspection Identification of outliers Missing data Checking assumptions for MVA Graphical inspection and simple analyses 1 variable: frequency table simple statistics: central tendency: mean, median, mode dispersion: variance (stand.dev.), range histogram ‘time series’ plot 2 variables: scatterplot correlation, cross-tab Histogram Histogram: Skewness of distribution? Bivariate analysis Metric versus metric Scatterplot, Pearson correlation Non-metric versus non-metric Cross-tab Spearman correlation (Rho) or Kendall’s Tau Example: Simple Scatterplot Cross-tab (1) Cross-tabs (2): Stockout Reactions per Brand Type Rho and Tau Useful to assess link between two ordinal variables Examples: Education (highest obtained) Swimming certificate (highest obtained) Categorically measured variables (e.g. shopping frequency, income class, age category) Example: Income and Shopping Frequency (Categories) Preliminary Data analysis: Summary Obtain preliminary insights using univariate en bivariate analyses First impression concerning missings, outliers and distributional properties ? crucial before using MVA? Outliers Outliers Types ‘good’: true value (probably) ‘bad’: someting is wrong? Causes Procedural error Exceptional circumstances (cause known or unknown) ‘Regular’ levels, yet unique in combination with other variables (bivariate en multivariate outliers) Identifying outliers Univariat

您可能关注的文档

文档评论(0)

zhuliyan1314 + 关注
实名认证
内容提供者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档