- 1、本文档共33页,可阅读全部内容。
- 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
- 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载。
- 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
查看更多
Marketing Research的课件- Logistic_s
Logistic Regression Session: March 8 and 12; 2010 1. Objectives/Purpose Predict likelihood that an event will occur (yes/no) Assess variables that affect event occurrence Direction of influence Magnitude/importance 1. Objectives/Purpose Examples: What is the probability that a person will respond to a Neckerman direct mailing, and how can Neckerman adjust its mail content to increase this probability? Does improved waiting time at the checkout increase C1000’s store patronage? What distinguishes heavy from light ‘donators’ to Parents plan charity? 2. Steps Design Assumptions Model Estimation and Fit Interpreting Results Validation LR: Design Dependent variable: Dichotomous (0/1): mutually exclusive/exhaustive Reconstructed from metric variable (polar extremes approach) Independent variables: Metric or dummy variables Based on theory, intuition? Example: Advertising through in-store screens Do consumers notice ad messages on TV screens in store? How does this depend on message characteristics? Which consumers primarily notice the message? Example: In-store TV ads (ctd) Dependent: seen/not seen (recall?) Independent: Consumer: store visit frequency (klantVOD), education, Home Tv-ad seen, competitive store visited recently? Message: sound, length Research Design (ctd) Sample: # observations/#independent variables Group sizes Analysis versus Holdout sample (proportionally stratified subsamples?) Assumptions of LR Two groups for outcome variable (Extension: MNL) Robust to deviations from multivariate normality and equal VC matrices Model form: S-shaped Logistic Regression Model LR estimation: Maximum Likelihood Given: ‘Observed’ events (e.g. questionnaire: seen=1/not seen=0) yi Measures for independent variables Xki Find parameters b0, b1, … that provide best ‘match’: maximize Model Fit Likelihood value: low enough –2LL (close to 0? ) Pseudo R2 Nagelkerke R2 (close to 1?) Classification Table Hit rate ( chance?) Hosmer-Lemeshow test (no significant differenc
您可能关注的文档
- International Fruit and Vegetable Alliance(PPT 30页).ppt
- Introduction to Cultural Mapping, and its relevance in the 31C4 UNESCO’s objectives and lessons learnt(PPT 23页).ppt
- IPDSLAM和平里宾馆宽带接入解决方案.doc
- IPQC培训教材000ppt.ppt
- IPSec基础.doc
- Is this your pencil课件(PPT 22页).ppt
- ISFJ(内倾、感觉、情感和判断)——我以名誉担保,履行自己的责任和义务.doc
- It’s raining课件(PPT 24页).ppt
- IT行业项目管理(英).ppt
- IT规划助力煤炭物资供应一体化.doc
文档评论(0)