动作电位在神经纤维上传导的新模型学习.docxVIP

动作电位在神经纤维上传导的新模型学习.docx

  1. 1、本文档共14页,可阅读全部内容。
  2. 2、有哪些信誉好的足球投注网站(book118)网站文档一经付费(服务费),不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
  3. 3、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。如您付费,意味着您自己接受本站规则且自行承担风险,本站不退款、不进行额外附加服务;查看《如何避免下载的几个坑》。如果您已付费下载过本站文档,您可以点击 这里二次下载
  4. 4、如文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“版权申诉”(推荐),也可以打举报电话:400-050-0827(电话支持时间:9:00-18:30)。
  5. 5、该文档为VIP文档,如果想要下载,成为VIP会员后,下载免费。
  6. 6、成为VIP后,下载本文档将扣除1次下载权益。下载后,不支持退款、换文档。如有疑问请联系我们
  7. 7、成为VIP后,您将拥有八大权益,权益包括:VIP文档下载权益、阅读免打扰、文档格式转换、高级专利检索、专属身份标志、高级客服、多端互通、版权登记。
  8. 8、VIP文档为合作方或网友上传,每下载1次, 网站将根据用户上传文档的质量评分、类型等,对文档贡献者给予高额补贴、流量扶持。如果你也想贡献VIP文档。上传文档
查看更多
动作电位在有髓鞘神经纤维上传导的一种新模型建立及讨论P辛琦物理学院论文正文请见下一页,本页为非学术方面的对于小论文的几点解释,您可以阅读完我的论文全文再看这一页内容高中学生物时我就对神经纤维上动作电位传导这个过程从物理角度出发的电磁学机制很感兴趣,因为我一直都认为物理是相对生物和化学来讲更根本的学科,一切事物都无条件在物理规律下存在、运动、变化、相互发生关系着。然而动作电位在神经纤维上的传导这部分知识不是高考的考点,高中生物教材上的这部分内容太过简略,对这个过程的讲解仅是一句话带过,让我们记住结论而已;高中时我查阅大学普通生物学教材也同样没有得到尽如人意的解释。这个问题拖到现在已经两三年了,于是我打算借着这次电磁学小论文的机会搞清楚这个困扰我已久的问题。我的研究目的就是尽可能保留轴突的空间特征的动作电位传导模型,并计算传导速度来检查模型的合理性。这个新模型是我独立提出的,受知识与能力所限,且时间仓促,提出的模型仍然简化得比我预想中多很多,没有达到我开始做课题时的预期。不过我确实在这个过程中花了很多时间查阅相关资料,建立这个看似简单甚至有些简陋的模型的每一步,都是我尝试了很多种其他方式之后才确定的。有些我设想的模型需要的数学、电磁学甚至热学知识太过复杂,我的能力还远远达不到;有些我设想的模型看似有一些道理但简单推导后便发现与事实相违背。同时,我保证这篇小论文中除非特殊声明的地方,每一句话都是我理解了知识后自己表述出来的,没有直接从书上或者网上抄。总而言之,做出一个新东西所花费的时间、精力远远多于这个新东西表面看起来需要花费的时间、精力。虽然我提出的模型没有达到我的预期,但这次的小论文的确让我的能力得到了以前从未有过的锻炼。正文动作电位在有髓鞘神经纤维上传导的一种新模型建立及讨论P辛琦物理学院一、研究背景神经纤维是多细胞生物体内用于细胞内传递信息的通路,由轴突与髓鞘构成。神经纤维分布到人体所有器官和组织间隙中,其主要功能是对冲动发生传导。传导的速度在每秒几米到每秒几百米不等,传导的过程是以生物电信号的形式进行。单个神经元神经纤维上的电信号传递与神经元之间的化学突触或电突触的信号传递共同构成了神经系统的信息传递,使多细胞生物能够感知外界刺激并迅速做出相应反应,且对于生物主观意识的产生有着不言而喻的作用。神经纤维传递电信号实质是神经纤维上动作电位的传导,对于这个过程的物理电学机制,前人已经做过较多的研究。由于生物体系的复杂性,我们没有能力也不可能了解到这个过程的一切影响因素,所以没有办法完全精确地刻画并解释出这个过程的具体机制。我们需要做的是“抓住主要矛盾”,建立合理的、从现实中简化而来的模型,既不至于太复杂以致无法分析,又不至于简化过度以致与现实脱轨。前人所建模型主要有HH模型,电缆模型,McNeal模型,CRRSS模型等。这些模型能够较好地反映出轴突与髓鞘的电学性质并解释动作电位传导过程。然而这些模型大多都是把神经纤维上的神经冲动传递的过程转化为了完全由电容、电阻组成的简单电路的电流流过过程。以HH模型为例(见图1-1),它将轴突纵向的图1-1 HH模型离子运动用电子通过电阻替代;将离子沿轴突横向的运动,也就是细胞膜的离子进出,用“离子电导”替代,将膜两侧的电势差用电容等效。必须承认这样的简化还是非常科学的,通过计算得到的动作电位传递速度在实验测得的合理范围内。然而,将离子在溶液中的运动简化成电子在电路中的运动不免让人感到些许不满意,因为从更本质的离子运动和电场角度出发其实在当前物理学的发展下是可以做到的。本文希望能提出一个不同于前人的神经纤维上动作电位传导的物理模型:保留轴突及周围溶液的空间属性,尽量不将他们简化为电路中的元件。二、研究目的1.建立一个从电场、离子角度出发的,尽可能保留轴突的空间特征的动作电位在神经纤维上传导的物理模型。2.在自己建立的模型下推导出动作电位的传递速度,与实验值进行比较,评价新模型的合理性。三、动作电位传导的大致过程与轴突上的离子通道性质说明静息时,单一离子在膜两侧浓度梯度造成的化学驱动力和膜两侧电势差造成的电场力下保持平衡。多个离子共存时的静息电位在它们分别的静息电位之间,最靠近通透性最大的离子的平衡电位。静息时仍有方向相反的离子流过神经元轴突膜(钠离子流向膜内,钾离子流向膜外),钠钾泵负责抵消这种离子跨膜流动,保持离子浓度的稳定。静息时神经元电势为膜外高于膜内。兴奋时,由于局部电流的作用(下一段会细说局部电流的成因),膜电位上升,上升到某一阈值后轴突膜上钠离子通道的通透性迅速变强,使钠离子在化学驱动力与电场力共同作用下大量流入细胞膜内,从而使膜内电势高于膜外。这个过程称之为去极化。之后随即钠通道关闭,钾通道开启(时间上钠通道与钾通道有共同开放的时间),大量

文档评论(0)

xuefei111 + 关注
实名认证
文档贡献者

该用户很懒,什么也没介绍

1亿VIP精品文档

相关文档